Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (8): 43-49.doi: 10.3969/j.issn.2097-0706.2022.08.004
• Cell System with Oxygen-Ion Conducting Electrolyte • Previous Articles Next Articles
HAN Qianwen1(), ZHANG Kun1(
), CHEN Xiaoyang1,2(
), ZHU Tenglong1,*(
)
Received:
2022-07-17
Revised:
2022-08-09
Published:
2022-08-25
Contact:
ZHU Tenglong
E-mail:hanqw1998@163.com;2498249631@qq.com;21S155060@stu.hit.edu.cn;zhutenglong@njust.edu.cn
CLC Number:
HAN Qianwen, ZHANG Kun, CHEN Xiaoyang, ZHU Tenglong. Study on La/Ni co-doped SrTi0.35Fe0.65O3-δ symmetric electrode for H2O/CO2 co-electrolysis in SOECs[J]. Integrated Intelligent Energy, 2022, 44(8): 43-49.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.08.004
[1] |
SONG Y, ZHANG X, XIE K, et al. High-temperature CO2 electrolysis in solid oxide electrolysis cells: Developments, challenges, and prospects[J]. Advanced Materials, 2019, 31(50): 1902033.
doi: 10.1002/adma.201902033 |
[2] |
MILLER H A, LAVACCHI A, VIZZA F. Storage of renewable energy in fuels and chemicals through electrochemical reforming of bioalcohols[J]. Current Opinion in Electrochemistry, 2020, 21: 140-145.
doi: 10.1016/j.coelec.2020.02.001 |
[3] |
张一民, 康建立, 赵乃勤. 过渡金属基电解水催化剂的发展现状及展望[J]. 综合智慧能源, 2022, 44(5): 15-29.
doi: 10.3969/j.issn.2097-0706.2022.05.002 |
ZHANG Yimin, KANG Jianli, ZHAO Naiqin. Development and perspectives of the transition metal-based catalysts for water splitting[J]. Integrated Intelligent Energy, 2022, 44(5):15-29.
doi: 10.3969/j.issn.2097-0706.2022.05.002 |
|
[4] |
吴林芮, 刘璐, 孟瑜, 等. 锌-空气电池阴极碳基催化剂材料研究进展[J]. 综合智慧能源, 2022, 44(4): 65-70.
doi: 10.3969/j.issn.2097-0706.2022.04.008 |
WU Linrui, LIU Lu, MENG Yu, et al. Research progress of carbon-based catalyst materials for cathodes of Zn-air batteries[J]. Integrated Intelligent Energy, 2022, 44(4): 65-70.
doi: 10.3969/j.issn.2097-0706.2022.04.008 |
|
[5] |
GOEPPERT A, CZAUN M, JONES J-P, et al. Recycling of carbon dioxide to methanol and derived products—Closing the loop[J]. Chemical Society Reviews, 2014, 43(23): 7995-8048.
doi: 10.1039/C4CS00122B |
[6] |
HARTVIGSEN J, ELANGOVAN S, FROST L, et al. Carbon dioxide recycling by high temperature co-electrolysis and hydrocarbon synthesis[J]. Ecs Transactions, 2008, 12(1):625.
doi: 10.1149/1.2921588 |
[7] |
STOOTS C, O'BRIEN J, HARTVIGSEN J. Results of recent high temperature coelectrolysis studies at the Idaho National Laboratory[J]. International Journal of Hydrogen Energy, 2009, 34(9): 4208-4215.
doi: 10.1016/j.ijhydene.2008.08.029 |
[8] | 范慧. 可逆燃料电池——电解池氧电极复合改性研究[D]. 北京: 中国矿业大学, 2014. |
[9] |
BIAN L, DUAN C, WANG L, et al. An all-oxide electrolysis cells for syngas production with tunable H2/CO yield via co-electrolysis of H2O and CO2[J]. Journal of Power Sources, 2021, 482: 228887.
doi: 10.1016/j.jpowsour.2020.228887 |
[10] |
KAMKENG A D, WANG M. Long-term performance prediction of solid oxide electrolysis cell (SOEC) for CO2/H2O co-electrolysis considering structural degradation through modelling and simulation[J]. Chemical Engineering Journal, 2022, 429: 132158.
doi: 10.1016/j.cej.2021.132158 |
[11] |
KAZEMPOOR P, ASADI J, BRAUN R. Validation challenges in solid oxide electrolysis cell modeling fueled by low steam/CO2 ratio[J]. International Journal of Hydrogen Energy, 2022, 47(36): 15952-15959.
doi: 10.1016/j.ijhydene.2022.03.115 |
[12] |
MENON V, FU Q, JANARDHANAN V M, et al. A model-based understanding of solid-oxide electrolysis cells (SOECs) for syngas production by H2O/CO2 co-electrolysis[J]. Journal of Power Sources, 2015, 274: 768-781.
doi: 10.1016/j.jpowsour.2014.09.158 |
[13] |
NI M. An electrochemical model for syngas production by co-electrolysis of H2O and CO2[J]. Journal of Power Sources, 2012, 202: 209-216.
doi: 10.1016/j.jpowsour.2011.11.080 |
[14] |
LI S, LI Y, GAN Y, et al. Electrolysis of H2O and CO2 in an oxygen-ion conducting solid oxide electrolyzer with a La0. 2Sr0. 8TiO3+δ composite cathode[J]. Journal of Power Sources, 2012, 218: 244-249.
doi: 10.1016/j.jpowsour.2012.06.046 |
[15] |
ZHAN Z, KOBSIRIPHAT W, WILSON J R, et al. Syngas production by coelectrolysis of CO2/H2O:The basis for a renewable energy cycle[J]. Energy & Fuels, 2009, 23(6): 3089-3096.
doi: 10.1021/ef900111f |
[16] |
ZHANG L, ZHU X, CAO Z, et al. Pr and Ti co-doped strontium ferrite as a novel hydrogen electrode for solid oxide electrolysis cell[J]. Electrochimica Acta, 2017, 232: 542-549.
doi: 10.1016/j.electacta.2017.02.168 |
[17] |
SHU L, SUNARSO J, HASHIM S S, et al. Advanced perovskite anodes for solid oxide fuel cells: A review[J]. International Journal of Hydrogen Energy, 2019, 44(59): 31275-31304.
doi: 10.1016/j.ijhydene.2019.09.220 |
[18] | IRVINE J T, NEAGU D, VERBRAEKEN M C, et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers[J]. Nature Energy, 2016, 1(1): 1-13. |
[19] |
SUN Y, LI J, ZENG Y, et al. A-site deficient perovskite: The parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes[J]. Journal of Materials Chemistry A, 2015, 3(20): 11048-11056.
doi: 10.1039/C5TA01733E |
[20] |
ZHU T, TROIANI H E, MOGNI L V, et al. Ni-substituted Sr(Ti, Fe)O3 SOFC anodes: Achieving high performance via metal alloy nanoparticle exsolution[J]. Joule, 2018, 2(3): 478-496.
doi: 10.1016/j.joule.2018.02.006 |
[21] | 倪维婕, 朱腾龙, 陈晓阳, 等. Co/Ni掺杂SrTi0.3Fe0.7O3-δ钙钛矿电极材料制备及性能[J]. 硅酸盐学报, 2019, 47(3): 313-319. |
NI Weijie, ZHU Tenglong, CHEN Xiaoyang, et al. Fabrication and characterization of Co/Ni substituted SrTi0.3Fe0.7O3-δ perovskite electrode[J]. Journal of the Chinese Ceramic Society, 2019, 47(3): 313-319. | |
[22] |
ZHANG L, LI Y, ZHANG B, et al. (La, Sr)(Ti, Fe)O3-δ perovskite with in-situ constructed FeNi3 nanoparticles as fuel electrode for reversible solid oxide cell[J]. International Journal of Energy Research, 2021, 45(15): 21264-21273.
doi: 10.1002/er.7177 |
[23] |
LI Y, XIE K, CHEN S, et al. Efficient carbon dioxide electrolysis based on perovskite cathode enhanced with nickel nanocatalyst[J]. Electrochimica Acta, 2015, 153: 325-333.
doi: 10.1016/j.electacta.2014.11.151 |
[24] |
LV H, LIN L, ZHANG X, et al. In situ investigation of reversible exsolution/dissolution of CoFe alloy nanoparticles in a co-doped Sr2Fe1. 5Mo0. 5O6-δ cathode for CO2 electrolysis[J]. Advanced Materials, 2020, 32(6): 1906193.
doi: 10.1002/adma.201906193 |
[25] |
PARK S, KIM Y, HAN H, et al. In situ exsolved Co nanoparticles on Ruddlesden-Popper material as highly active catalyst for CO2 electrolysis to CO[J]. Applied Catalysis B: Environmental, 2019, 248: 147-156.
doi: 10.1016/j.apcatb.2019.02.013 |
[26] | LIANG J, HAN M. Different performance and mechanisms of CO2 electrolysis with CO and H2 as protective gases in solid oxide electrolysis cell[J]. International Journal of Hydrogen Energy, 2022. |
[27] |
TORRELL M, GARCÍA-RODRÍGUEZ S, MORATA A, et al. Co-electrolysis of steam and CO2 in full-ceramic symmetrical SOECs: A strategy for avoiding the use of hydrogen as a safe gas[J]. Faraday Discussions, 2015, 182: 241-255.
doi: 10.1039/C5FD00018A |
[28] |
WANG Y, LIU T, FANG S, et al. Syngas production on a symmetrical solid oxide H2O/CO2 co-electrolysis cell with Sr2Fe1.5Mo0.5O6-Sm0.2Ce0.8O1.9 electrodes[J]. Journal of Power Sources, 2016, 305: 240-248.
doi: 10.1016/j.jpowsour.2015.11.097 |
[29] |
LI Q, ZHENG Y, SUN Y, et al. Understanding the occurrence of the individual CO2 electrolysis during H2O-CO2 co-electrolysis in classic planar Ni-YSZ/YSZ/LSM-YSZ solid oxide cells[J]. Electrochimica Acta, 2019, 318: 440-448.
doi: 10.1016/j.electacta.2019.06.108 |
[30] |
ZHENG H, TIAN Y, ZHANG L, et al. La0.8Sr0.2Co0.8Ni0.2O3-δ impregnated oxygen electrode for H2O/CO2 co-electrolysis in solid oxide electrolysis cells[J]. Journal of Power Sources, 2018, 383: 93-101.
doi: 10.1016/j.jpowsour.2018.02.041 |
[1] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[2] | YANG Lei, WANG Rui, MA Lili, SUN Ning, LI Xuelian, CHEN Ting, WANG Shaorong, SHI Caixia. Research on Ca and Fe co-doped PrBaCo2O5+δ as a cathode material of solid oxide fuel cells [J]. Integrated Intelligent Energy, 2024, 46(7): 47-52. |
[3] | DOU Zhenlan, LI Jiawen, ZHANG Chunyan, CAI Zhenqi, YUAN Benfeng, JIA Kunqi, XIAO Guoping, WANG Jianqiang. Spatiotemporal distributed parameter modeling of solid oxide electrolysis cells [J]. Integrated Intelligent Energy, 2024, 46(7): 53-62. |
[4] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[5] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[6] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[7] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[8] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[9] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[10] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[11] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[12] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[13] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[14] | LI Qinggen, SUN Na, DONG Haiying. Optimal configuration for shared energy storage based on improved whale optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(9): 65-76. |
[15] | YANG Bo, LI Chengyun, LYU Haoxuan, ZHOU Bowen, LI Guangdi, GU Peng. Power system transient stability assessment method based on multiple STA-GLN ensemble models [J]. Integrated Intelligent Energy, 2023, 45(7): 48-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||