Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (9): 1-10.doi: 10.3969/j.issn.2097-0706.2022.09.001
• Integrated Energy System • Next Articles
GAO Ming1(), CHEN Jiahao2,*(
), WANG Lixiao1, TANG Wuchen1, WANG Zhidong3, ZHANG Zifan1, MA Haixia1, FENG Ruijue1, ZHOU Changpeng1
Received:
2022-06-20
Revised:
2022-08-30
Published:
2022-09-25
Contact:
CHEN Jiahao
E-mail:gaoyugui0508@163.com;chenjiahao0823@163.com
CLC Number:
GAO Ming, CHEN Jiahao, WANG Lixiao, TANG Wuchen, WANG Zhidong, ZHANG Zifan, MA Haixia, FENG Ruijue, ZHOU Changpeng. A three-point probabilistic load flow estimation algorithm for the power system considering photovoltaic uncertainties[J]. Integrated Intelligent Energy, 2022, 44(9): 1-10.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.09.001
Table 1
Results of node voltages considering PV and without PV
节点号 | 计及光伏(标幺值) | 不计光伏(标幺值) | 节点号 | 计及光伏(标幺值) | 不计光伏(标幺值) | ||||
---|---|---|---|---|---|---|---|---|---|
期望值 | 标准差 | 期望值 | 标准差 | 期望值 | 标准差 | 期望值 | 标准差 | ||
1 | 0.000 0 | 0.00E+00 | 0.000 0 | 0.00E+00 | 18 | 0.916 9 | 3.93E-03 | 0.913 1 | 2.30E-03 |
2 | 0.997 1 | 9.16E-05 | 0.997 0 | 7.30E-05 | 19 | 0.996 6 | 9.89E-05 | 0.996 5 | 8.20E-05 |
3 | 0.983 5 | 5.74E-04 | 0.982 9 | 4.53E-04 | 20 | 0.993 0 | 2.59E-04 | 0.992 9 | 2.53E-04 |
4 | 0.976 2 | 7.99E-04 | 0.975 5 | 6.34E-04 | 21 | 0.992 3 | 2.99E-04 | 0.992 2 | 2.94E-04 |
5 | 0.969 0 | 1.05E-03 | 0.968 1 | 8.33E-04 | 22 | 0.991 7 | 3.40E-04 | 0.991 6 | 3.36E-04 |
6 | 0.951 0 | 1.72E-03 | 0.949 7 | 1.40E-03 | 23 | 0.980 1 | 7.99E-04 | 0.979 3 | 6.31E-04 |
7 | 0.947 6 | 1.83E-03 | 0.946 2 | 1.47E-03 | 24 | 0.973 4 | 1.17E-03 | 0.972 7 | 1.06E-03 |
8 | 0.943 1 | 2.09E-03 | 0.941 3 | 1.57E-03 | 25 | 0.970 1 | 1.40E-03 | 0.969 4 | 1.31E-03 |
9 | 0.937 3 | 2.49E-03 | 0.935 1 | 1.68E-03 | 26 | 0.949 1 | 1.78E-03 | 0.947 7 | 1.47E-03 |
10 | 0.932 0 | 2.91E-03 | 0.929 2 | 1.81E-03 | 27 | 0.946 5 | 1.87E-03 | 0.945 2 | 1.58E-03 |
11 | 0.931 3 | 2.99E-03 | 0.928 4 | 1.83E-03 | 28 | 0.935 1 | 2.38E-03 | 0.933 7 | 2.16E-03 |
12 | 0.929 9 | 3.14E-03 | 0.926 9 | 1.87E-03 | 29 | 0.926 9 | 2.80E-03 | 0.925 5 | 2.61E-03 |
13 | 0.924 5 | 3.76E-03 | 0.920 8 | 2.05E-03 | 30 | 0.923 3 | 2.99E-03 | 0.921 9 | 2.81E-03 |
14 | 0.922 3 | 3.81E-03 | 0.918 5 | 2.13E-03 | 31 | 0.919 2 | 3.12E-03 | 0.917 8 | 2.95E-03 |
15 | 0.920 9 | 3.84E-03 | 0.917 1 | 2.17E-03 | 32 | 0.918 3 | 3.16E-03 | 0.916 9 | 2.99E-03 |
16 | 0.919 5 | 3.86E-03 | 0.915 7 | 2.21E-03 | 33 | 0.918 0 | 3.16E-03 | 0.916 6 | 2.99E-03 |
17 | 0.917 5 | 3.91E-03 | 0.913 7 | 2.28E-03 |
Table 2
Active power flow of each line considering PV and without PV
起点 | 终点 | 计及光伏/MW | 不计光伏/MW | 起点 | 终点 | 计及光伏/MW | 不计光伏/MW | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
期望值 | 标准差 | 期望值 | 标准差 | 期望值 | 标准差 | 期望值 | 标准差 | ||||
1 | 2 | 3.334 0 | 2.69E-01 | 3.918 1 | 9.27E-02 | 20 | 21 | 0.180 1 | 1.28E-02 | 0.180 1 | 1.27E-02 |
2 | 3 | 2.863 1 | 2.67E-01 | 3.444 7 | 8.98E-02 | 21 | 22 | 0.090 0 | 9.01E-03 | 0.090 0 | 9.01E-03 |
3 | 4 | 1.793 2 | 2.54E-01 | 2.363 2 | 6.09E-02 | 3 | 23 | 0.939 6 | 6.14E-02 | 0.939 7 | 6.14E-02 |
4 | 5 | 1.658 9 | 2.51E-01 | 2.223 3 | 5.86E-02 | 23 | 24 | 0.846 5 | 6.03E-02 | 0.846 5 | 6.03E-02 |
5 | 6 | 1.585 8 | 2.49E-01 | 2.144 5 | 5.72E-02 | 24 | 25 | 0.421 3 | 4.22E-02 | 0.421 3 | 4.22E-02 |
6 | 7 | 1.095 0 | 3.71E-02 | 1.095 3 | 3.71E-02 | 6 | 26 | 0.404 0 | 2.41E-01 | 0.950 9 | 4.00E-02 |
7 | 8 | 0.893 1 | 3.11E-02 | 0.893 4 | 3.11E-02 | 26 | 27 | 0.342 4 | 2.41E-01 | 0.888 3 | 3.93E-02 |
8 | 9 | 0.688 3 | 2.33E-02 | 0.688 5 | 2.33E-02 | 27 | 28 | 0.280 3 | 2.40E-01 | 0.825 0 | 3.85E-02 |
9 | 10 | 0.624 2 | 2.22E-02 | 0.624 4 | 2.22E-02 | 28 | 29 | 0.753 2 | 3.67E-02 | 0.753 6 | 3.68E-02 |
10 | 11 | 0.560 7 | 2.11E-02 | 0.560 8 | 2.11E-02 | 29 | 30 | 0.625 6 | 3.39E-02 | 0.625 8 | 3.39E-02 |
11 | 12 | 0.515 1 | 2.06E-02 | 0.515 2 | 2.06E-02 | 30 | 31 | 0.421 8 | 2.67E-02 | 0.421 8 | 2.68E-02 |
12 | 13 | 0.454 3 | 1.96E-02 | 0.454 4 | 1.96E-02 | 31 | 32 | 0.270 2 | 2.19E-02 | 0.270 2 | 2.19E-02 |
13 | 14 | 0.391 7 | 1.84E-02 | 0.391 7 | 1.84E-02 | 32 | 33 | 0.060 0 | 6.00E-03 | 0.060 0 | 6.00E-03 |
14 | 15 | 0.270 9 | 1.38E-02 | 0.270 9 | 1.39E-02 | 21 | 8 | 0.000 0 | 0.00E+00 | 0.000 0 | 0.00E+00 |
15 | 16 | 0.210 6 | 1.24E-02 | 0.210 6 | 1.24E-02 | 9 | 15 | 0.000 0 | 0.00E+00 | 0.000 0 | 0.00E+00 |
16 | 17 | 0.150 3 | 1.09E-02 | 0.150 3 | 1.09E-02 | 12 | 22 | 0.000 0 | 0.00E+00 | 0.000 0 | 0.00E+00 |
17 | 18 | 0.090 1 | 9.00E-03 | 0.090 1 | 9.01E-03 | 18 | 33 | 0.000 0 | 0.00E+00 | 0.000 0 | 0.00E+00 |
2 | 19 | 0.361 1 | 1.81E-02 | 0.361 1 | 1.81E-02 | 25 | 29 | 0.000 0 | 0.00E+00 | 0.000 0 | 0.00E+00 |
19 | 20 | 0.271 0 | 1.57E-02 | 0.271 0 | 1.57E-02 |
[1] | 康重庆, 杜尔顺, 张宁, 等. 可再生能源参与电力市场:综述与展望[J]. 南方电网技术, 2016, 10(3): 16-23. |
KANG Chongqing, DU Ershun, ZHANG Ning, et al. Review and prospect[J]. Southern Power System Technology, 2016, 10(3): 16-23. | |
[2] | 陆为华. 考虑光伏出力与负荷时序相关性的概率潮流计算方法研究[D]. 沈阳: 东北电力大学, 2021. |
[3] |
ZHANG J, XIONG G, MENG K, et al. An improved probabilistic load flow simulation method considering correlated stochastic variables[J]. International Journal of Electrical Power & Energy Systems, 2019, 111: 260-268.
doi: 10.1016/j.ijepes.2019.04.007 |
[4] | BORKOWSKA B. Probabilistic load flow[J]. IEEE Transactions on Power Apparatus and Systems, 1974(3): 752-759. |
[5] | 蔡德福, 周鲲鹏, 忻俊慧, 等. 概率潮流计算方法研究综述[J]. 湖北电力, 2015, 39(10): 20-25. |
CAI Defu, ZHOU Kunpeng, XIN Junhui, et al. A Review of probabilistic load flow algorithm[J]. Hubei Electric Power, 2015, 39(10):20-25. | |
[6] | 刘宇, 高山, 杨胜春, 等. 电力系统概率潮流算法综述[J]. 电力系统自动化, 2014, 38(23): 127-135. |
LIU Yu, GAO Shan, YANG Shengchun, et al. Review on algorithms for probabilistic load flow in power system[J]. Automation of Electric Power Systems, 2014, 38(23):127-135. | |
[7] | 周阳洋. 重要抽样法在概率潮流中的应用[D]. 北京: 华北电力大学, 2011. |
[8] | 王晗, 严正, 徐潇源, 等. 计及可再生能源不确定性的孤岛微电网概率潮流计算[J]. 电力系统自动化, 2018, 42(15):110-117. |
WANG Han, YAN Zheng, XU Xiaoyuan, et al. Probabilistic power flow calculation of islanded microgrid considering uncertainty of renewable energy[J]. Automation of Electric Power Systems, 2018, 42(15): 110-117. | |
[9] |
YU H, CHUNG C Y, WONG K P, et al. Probabilistic load flow evaluation with hybrid latin hypercube sampling and Cholesky decomposition[J]. IEEE Transactions on Power Systems, 2009, 24(2): 661-667.
doi: 10.1109/TPWRS.2009.2016589 |
[10] | 杨小款. 大规模风电并网电力系统运行风险评估与分析[D]. 北京: 华北电力大学, 2021. |
[11] | 严岩, 苏宏升, 车玉龙. 基于改进LHS的含风电电力系统概率潮流计算[J]. 太阳能学报, 2018, 39(4): 1111-1118. |
YAN Yan, SU Hongsheng, CHE Yulong. Probabilistic power flow calculation of power system considering wind power based on improved LHS[J]. Acta Energiae Solaris Sinica, 2018, 39(4): 1111-1118. | |
[12] | 杨晓萍, 王李瑾. 基于概率潮流的含分布式电源配电网优化[J]. 太阳能学报, 2021, 42(8):71-76. |
YANG Xiaoping, WANG Lijin. Optimization of distributed power distribution network based on probabilistic load flow[J]. Acta Energiae Solaris Sinica, 2021, 42(8):71-76. | |
[13] | 张德隆, MUBAARAK Saif, 蒋思宇, 等. 基于概率潮流的光伏电站中储能系统的优化配置方法[J]. 储能科学与技术, 2021, 10(6):2244-2251. |
ZHANG Delong, MUBAARAK Saif, JIANG Siyu, et al. Optimal allocation method of energy storage in PV station based on probabilistic power flow[J]. Energy Storage Science and Technology, 2021, 10(6):2244-2251. | |
[14] | 朱星阳, 刘文霞, 张建华. 考虑大规模风电并网的电力系统随机潮流[J]. 中国电机工程学报, 2013, 33(7):77-85. |
ZHU Xingyang, LIU Wenxia, ZHANG Jianhua. Probabilistic load flow method considering large-scale wind power integration[J]. Proceedings of the CSEE, 2013, 33(7):77-85. | |
[15] | 张萍, 张红, 李云峰, 等. 基于改进LHS的半不变量法概率潮流计算[J]. 太阳能学报, 2021, 42(1): 14-20. |
ZHANG Ping, ZHANG Hong, LI Yunfeng, et al. Improved LHS based cumulant method for probabilistic load flow calculation[J]. Acta Energiae Solaris Sinica, 2021, 42(1): 14-20. | |
[16] |
ZHANG P, LEE S T. Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion[J]. IEEE Transactions on Power Systems, 2004, 19(1): 676-682.
doi: 10.1109/TPWRS.2003.818743 |
[17] |
FAN M, VITTAL V, HEYDT G T, et al. Probabilistic power flow studies for transmission systems with photovoltaic generation using cumulants[J]. IEEE Transactions on Power Systems, 2012, 27(4):2251-2261.
doi: 10.1109/TPWRS.2012.2190533 |
[18] | 石东源, 蔡德福, 陈金富, 等. 计及输入变量相关性的半不变量法概率潮流计算[J]. 中国电机工程学报, 2012, 32(28):104-113. |
SHI Dongyuan, CAI Defu, CHEN Jinfu, et al. Probabilistic load flow calculation based on cumulant method considering correlation between input variables[J]. Proceedings of the Chinese Society for Electrical Engineering, 2012, 32(28): 104-113. | |
[19] |
MORALES J M, PEREZ-RUIZ J. Point estimate schemes to solve the probabilistic power flow[J]. IEEE Transactions on Power Systems, 2007, 22(4): 1594-1601.
doi: 10.1109/TPWRS.2007.907515 |
[20] |
CHEN C, WU W, ZHANG B, et al. Correlated probabilistic load flow using a point estimate method with Nataf transformation[J]. International Journal of Electrical Power & Energy Systems, 2015, 65: 325-333.
doi: 10.1016/j.ijepes.2014.10.035 |
[21] | 鄂霖, 马振, 肖宇, 等. 直流配电网的三点估计概率潮流计算方法[J]. 分布式能源, 2021, 6(3):38-46. |
E Lin, MA Zhen, XIAO Yu, et al. Three-point estimation probability power flow calculation method for DC distribution network[J]. Distributed Energy, 2021, 6(3): 38-46. | |
[22] | 孟安波, 王鹏, 丁伟锋, 等. 基于强化学习及纵横交叉粒子群算法的电网最优潮流计算[J]. 华电技术, 2021, 43(8): 74-82. |
MENG Anbo, WANG Peng, DING Weifeng, et al. Optimal power flow calculation of power grid based on reinforcement learning and crisscross PSO algorithm particle swarm optimization[J]. Huadian Technology, 2021, 43(8): 74-82. | |
[23] | 陈宏岩, 唐治国, 陈琦, 等. 基于区间潮流算法的低压配电网分散无功补偿优化方法[J]. 华电技术, 2020, 42(6): 1-5. |
CHEN Hongyan, TANG Zhiguo, CHEN Qi, et al. Optimized method on distributed reactive power compensation in low voltage distribution network based on interval power flow calculation[J]. Huadian Technology, 2020, 42(6): 1-5. | |
[24] | 赵真, 袁旭峰, 徐玉韬, 等. 一种改进三点估计法的概率潮流计算方法[J]. 南方电网技术, 2020, 14(11): 43-48. |
ZHAO Zhen, YUAN Xufeng, XU Yutao, et al. An improved three-point estimate method for probability load flow calculation[J]. Southern Power System Technology, 2020, 14(11): 43-48. | |
[25] | 苏晨博, 刘崇茹, 李至峪, 等. 基于贝叶斯理论的考虑多维风速之间相关性的概率潮流计算[J]. 电力系统自动化, 2021, 45(3): 157-165. |
SU Chenbo, LIU Chongru, LI Zhiyu, et al. Bayesian theory based calculation of probabilistic power flow considering correlation between multi-dimensional wind speed[J]. Automation of Electric Power Systems, 2021, 45(3): 157-165. | |
[26] | 毛晓明, 叶嘉俊. 主元分析结合Cornish-Fisher展开的概率潮流三点估计法[J]. 电力系统保护与控制, 2019, 47(6): 66-72. |
MAO Xiaoming, YE Jiajun. A three-point estimate method for probabilistic load flow computation based on principal component analysis and Cornish-Fisher series[J]. Power System Protection and Control, 2019, 47(6): 66-72. | |
[27] |
R-AFISHER. The advanced theory of statistics[J]. Nature, 1943, 152(3859):431-432.
doi: 10.1038/152431a0 |
[28] | 王晓龙. 基于两点估计法的电力系统概率潮流计算[D]. 太原: 太原理工大学, 2013. |
[29] | 陈思思. 计及分布式电源发电相关性的概率潮流算法研究[D]. 广州: 华南理工大学, 2019. |
[30] | 姚琼荣. 计及风电不确定性的电力系统潮流及暂态稳定分析[D]. 南宁: 广西大学, 2014. |
[31] | 王敏, 丁明. 含大型太阳能发电系统的极限传输容量概率计算[J]. 电力系统自动化, 2010, 34(7): 31-35. |
WANG Min, DING Ming. Probabilistic calculation of total transfer capability including large-scale solar park[J]. Automation of Electric Power Systems, 2010, 34(7): 31-35. | |
[32] | FUJIKOSHI Y, ULYANOV V V. Non-asymptotic analysis of approximations for multivariate statistics[M].Springer Singapore, 2020. |
[33] | BARAN M E, WU F F. Network reconfiguration in distribution systems for loss reduction and load balancing[J]. IEEE Power Engineering Review, 1989, 9(4):101-102. |
[1] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[2] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[3] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[4] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[5] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[6] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[7] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[8] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[9] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[10] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[11] | HU Chao, PENG Wenhe, FANG Zhijian. Hierarchical optimization scheduling for electric vehicles with PV-power storage charging stations [J]. Integrated Intelligent Energy, 2023, 45(9): 11-17. |
[12] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[13] | LI Qinggen, SUN Na, DONG Haiying. Optimal configuration for shared energy storage based on improved whale optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(9): 65-76. |
[14] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[15] | CAO Zilin, WANG Wenjing, ZHAO Wei, KANG Ligai, GAO Xiaofeng, YANG Yang, WANG Jinzhu. Research on optimal scheduling of distributed integrated energy systems in load-intensive areas considering demand response [J]. Integrated Intelligent Energy, 2023, 45(7): 11-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||