Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (12): 81-90.doi: 10.3969/j.issn.2097-0706.2024.12.010
• Optimal Operation and Control • Previous Articles
ZHEN Xiaofei1,2(), LI Shang'e3, ZHANG Yongheng1,2, JIAO Ruonan1, WU Wenbing1
Received:
2024-10-10
Revised:
2024-11-04
Published:
2024-12-25
Supported by:
CLC Number:
ZHEN Xiaofei, LI Shang'e, ZHANG Yongheng, JIAO Ruonan, WU Wenbing. Research on multi-objective optimization of envelope structures for nearly zero-energy buildings in Northwest China[J]. Integrated Intelligent Energy, 2024, 46(12): 81-90.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.12.010
Table 4
Comparison of optimization schemes
优化变量 | 天花板保温材料 | 外墙保温材料 | 外墙保温层 厚度/mm | 天花板保温层厚度/mm | 西向窗墙比 | 南向窗墙比 | 北向窗墙比 | 外窗遮阳系数 |
---|---|---|---|---|---|---|---|---|
原始方案 | 聚苯板 | 岩棉 | 150 | 120 | 0.04 | 0.24 | 0.34 | 0.25 |
成本最优 | 聚苯板 | 聚苯板 | 100 | 110 | 0.05 | 0.29 | 0.30 | 0.38 |
能耗最优 | 聚苯板 | 聚氨酯 | 100 | 180 | 0.22 | 0.41 | 0.30 | 0.33 |
碳排放最优 | 聚苯板 | 聚氨酯 | 100 | 110 | 0.05 | 0.28 | 0.30 | 0.38 |
PPD最优 | 聚苯板 | 聚苯板 | 100 | 240 | 0.04 | 0.26 | 0.30 | 0.23 |
[1] | KHALID A H, STUART H, ABOUELWAFA A M. Occurrence, human exposure, and risk of microplastics in the indoor environment[J]. Environmental Science Processes & Impacts, 2021, 24(1): D1EM00301A. |
[2] | 郑立红, 周志华, 郭而郛, 等. 双碳背景下建筑碳排放动态基准线研究[J]. 制冷与空调(四川), 2022, 36(2):305-310,336. |
ZHENG Lihong, ZHOU Zhihua, GUO Erfu, et al. Research on dynamic baseline of building carbon emission under double carbon background[J]. Refrigeration and Air Conditioning, 2022, 36(2):305-310,336. | |
[3] | WASHIM A M, FIRDAUS M Z M, MD H, et al. Global prospects, advance technologies and policies of energy-saving and sustainable building systems: A review[J]. Sustainability, 2022, 14(3): 1316. |
[4] |
阳栋, 李晃, 李水生, 等. 建筑业减碳途径及实施策略[J]. 科技导报, 2022, 40(11): 105-110.
doi: 10.3981/j.issn.1000-7857.2022.11.012 |
YANG Dong, LI Huang, LI Shuisheng, et al. On the ways and implementation strategies of carbon reduction in China's construction industry[J]. Science & Technology Review, 2022, 40(11): 105-110. | |
[5] |
樊颜搏, 熊亚选, 李想, 等. 基于遗传算法的建筑用能多目标优化应用进展[J]. 综合智慧能源, 2024, 46(9): 69-85.
doi: 10.3969/j.issn.2097-0706.2024.09.009 |
FAN Yanbo, XIONG Yaxuan, LI Xiang, et al. Advancement in multi-objective optimization for building energy use based on genetic algorithms[J]. Integrated Intelligent Energy, 2024, 46(9): 69-85.
doi: 10.3969/j.issn.2097-0706.2024.09.009 |
|
[6] |
林漫华, 张婉娜, 郑荣宝, 等. 广州市绿色建筑的时空演变及影响因素分析[J]. 热带地理, 2023, 43(9):1823-1834.
doi: 10.13284/j.cnki.rddl.003737 |
LIN Manhua, ZHANG Wanna, ZHENG Rongbao. Spatial and temporal evolution and influencing factors of green buildings in Guangzhou[J]. Tropical Geography, 2023, 43(9): 1823-1834.
doi: 10.13284/j.cnki.rddl.003737 |
|
[7] | 赵泽锋, 袁媛, 李振兴, 等. 近零能耗建筑发展简述[J]. 绿色建筑, 2024, 16(1): 7-9, 24. |
ZHAO Zefeng, YUAN Yuan, LI Zhenxing, et al. A brief overview of the development of near-zero energy buildings[J]. Green Building, 2024, 16(1): 7-9, 24. | |
[8] |
胡开永, 刘峰, 吴秀杰, 等. 基于Trnsys能耗预测的村镇建筑不同供能方式碳-经济分析[J]. 综合智慧能源, 2023, 45(8): 64-71.
doi: 10.3969/j.issn.2097-0706.2023.08.008 |
HU Kaiyong, LIU Feng, WU Xiujie, et al. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction[J]. Integrated Intelligent Energy, 2023, 45(8): 64-71.
doi: 10.3969/j.issn.2097-0706.2023.08.008 |
|
[9] |
秦力, 刘佳楠, 史巍. 寒冷地区村镇附加阳光间住宅围护结构能耗实测分析[J]. 太阳能学报, 2022, 43(4): 264-270.
doi: 10.19912/j.0254-0096.tynxb.2020-0715 |
QIN Li, LIU Jianan, SHI Wei. Test analyses on energy consumption of rural residential building envelope with attached sunspace in cold region[J]. Acta Energiae Solaris Sinica, 2022, 43(4): 264-270.
doi: 10.19912/j.0254-0096.tynxb.2020-0715 |
|
[10] | RAVISHANKAR E, BOOTH R E, SARAVITZ C, et al. Achieving net zero energy greenhouses by integrating semitransparent organic solar cells[J]. Joule, 2020, 4(2): 490-506. |
[11] |
褚于颉, 陈柳, 邓文杰, 等. 太阳能驱动转轮空调在近零能耗建筑中的应用[J]. 太阳能学报, 2023, 44(4): 464-471.
doi: 10.19912/j.0254-0096.tynxb.2021-1390 |
CHU Yujie, CHEN Liu, DENG Wenjie, et al. Application of solar driven desiccant cooling system in near zero energy buildings[J]. Acta Energiae Solaris Sinica, 2023, 44(4): 464-471.
doi: 10.19912/j.0254-0096.tynxb.2021-1390 |
|
[12] | 马文生, 郭强, 黄霆鹤, 等. 严寒地区近零能耗建筑太阳能新风预热系统供暖效果实测研究[J]. 太阳能学报, 2020, 41(6): 370-374. |
MA Wensheng, GUO Qiang, HUANG Tinghe, et al. Experimental study on solar preheating system used in nearly-zero-energy building in severe cold area[J]. Acta Energiae Solaris Sinica, 2020, 41(6): 370-374. | |
[13] | NASROLLAH N. Comprehensive building envelope optimization: Improving energy, daylight, and thermal comfort performance of the dwelling unit[J]. Journal of Building Engineering, 2021, 44: 103418. |
[14] | 桑国臣, 陈得勇, 韩艳, 等. 双热扰下节能墙体对室内热环境的动态影响[J]. 太阳能学报, 2017, 38(1): 164-171. |
SANG Guochen, CHEN Deyong, HAN Yan, et al. Influence of energy-saving wall on indoor thermal environment under the condition of bilateral thermal disturbance[J]. Acta Energiae Solaris Sinica, 2017, 38(1): 164-171. | |
[15] | ACAR U, KASKA O, TOKGOZ N. Multi-objective optimization of building envelope components at the preliminary design stage for residential buildings in Turkey[J]. Journal of Building Engineering, 2021, 42: 102499. |
[16] | 住房和城乡建设部. 近零能耗建筑技术标准: GB/T 51350 —2019[S]. 北京: 中国建筑工业出版社. |
[17] | 徐权, 冯乐涛, 高楠, 等. 基于不同光资源数据的光伏发电小时数模拟分析[J]. 能源与节能, 2023(8): 18-22. |
XU Quan, FENG Letao, GAO Nan, et al. Simulation analysis of photovoltaic power generation hours based on different optical resource data[J]. Energy and Energy Conservation, 2023(8): 18-22. | |
[18] | 方宇龙, 张小松, 刘畅. 干式地板辐射非全覆盖导热板式末端供暖系统试验研究[J]. 东南大学学报(自然科学版), 2022, 52(6):1104-1113. |
FANG Yulong, ZHANG Xiaosong, LIU Chang. Experimental study of lightweight radiant floor heating system with non-full-coverage heat-conducting plate[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(6):1104-1113. | |
[19] | 钟辉智, 蔡君伟. 夏热冬冷地区净零能耗示范建筑能耗及碳排放分析[J]. 制冷与空调(四川), 2022, 36(2): 258-262. |
ZHONG Huizhi, CAI Junwei. Analysis on energy consumption and carbon emission of net zero energy consumption demonstration buildings in hot summer and cold winter areas[J]. Refrigeration & Air Conditioning, 2022, 36(2): 258-262. | |
[20] | ALI K A, AHMAD M I, YUSUP Y. Issues, impacts, and mitigations of carbon dioxide emissions in the building sector[J]. Sustainability, 2020, 12(18): 7427. |
[21] | 汪文楠. 绿色建筑工程造价管理的影响因素及解决方法[J]. 智能城市应用, 2024(2): 67-69. |
WANG Wennan. The influencing factors and solutions of cost management in green building projects[J]. Smart City Application, 2024(2): 67-69. | |
[22] | 王宜卿, 成建宏, 陈焕新, 等. 用于居民建筑的多联机系统能效标准分区可行性探讨[J]. 制冷技术, 2023, 43(3): 43-50. |
WANG Yiqing, CHENG Jianhong, CHEN Huanxin, et al. Discussion on feasibility of energy efficiency standard of variable refrigerant flow system for residential buildings[J]. Chinese Journal of Refrigeration Technology, 2023, 43(3): 43-50. | |
[23] | 刘勇. 暖通节能设计与暖通工程造价成本控制[J]. 工程技术创新与发展, 2023, 1(3): 105-107. |
LIU Yong. HVAC energy-saving design and HVAC engineering cost control[J]. Engineering Technology Innovation and Development, 2023, 1(3): 105-107. | |
[24] | 冯国会, 崔航, 常莎莎, 等. 近零能耗建筑碳排放及影响因素分析[J]. 气候变化研究进展, 2022, 18(2): 205-214. |
FENG Guohui, CUI Hang, CHANG Shasha, et al. Analysis of carbon emissions and influencing factors of near-zero energy buildings[J]. Climate Change Research, 2022, 18(2): 205-214. | |
[25] | FIDAN A A. Determination of optimum building envelope parameters of a room concerning window-to-wall ratio, orientation, insulation thickness and window type[J]. Buildings, 2022, 12(3): 383. |
[26] | MEHRDAD R, HABTAMU B M, NATASA N. Achieving zero-energy building performance with thermal and visual comfort enhancement through optimization of fenestration, envelope, shading device, and energy supply system[J]. Sustainable Energy Technologies and Assessments, 2021, 44: 101020. |
[27] | 狄育慧, 高亚茹, 蒋婧. 基于Airpak的某建筑工地活动板房室内热环境数值模拟[J]. 西安工程大学学报, 2023, 37(2): 40-46. |
DI Yuhui, GAO Yaru, JIANG Jing. Numerical simulation of indoor thermal environment of prefab house on a construction site based on Airpak[J]. Journal of Xi'an Polytechnic University, 2023, 37(2): 40-46. | |
[28] | 刘若辰, 李建霞, 刘静, 等. 动态多目标优化研究综述[J]. 计算机学报, 2020, 43(7): 1246-1278. |
LIU Ruochen, LI Jianxia, LIU Jing, et al. A survey on dynamic multi-objective optimization[J]. Chinese Journal of Computers, 2020, 43(7): 1246-1278. | |
[29] | 周少航. 近零能耗建筑碳排放及影响因素分析[J]. 城市建筑与发展, 2023, 4(5): 101-104. |
ZHOU Shaohang. Analysis of carbon emissions and influencing factors of near-zero energy buildings[J]. Urban architecture and development, 2023, 4(5): 101-104. | |
[30] | 闻莉. 基于技术进步的建筑业碳排放回弹效应测度[J]. 运筹与模糊学, 2023, 13(5):4298-4306. |
WEN Li. Measurement of the rebound effect of carbon emissions in the construction industry based on technological progress[J]. Operations Research and Fuzziness, 2023, 13(5):4298-4306. | |
[31] | 纪士斌. 建筑材料[M]. 4版. 北京: 清华大学出版社, 2004. |
[32] | 潘英. 能源战略下的能源电力发展方向和碳排放问题[J]. 南方能源建设, 2019, 6(3): 32-39. |
PAN Ying. Energy power development direction and low carbon emission under energy strategy[J]. Southern Energy Construction, 2019, 6(3): 32-39. | |
[33] | 张涛, 姜裕华, 黄有亮, 等. 建筑中常用的能源与材料的碳排放因子[J]. 中国建设信息, 2010(23): 58-59. |
ZHANG Tao, JIANG Yuhua, HUANG Youliang, et al. Carbon emission factors of energy and materials commonly used in buildings[J]. Information of China Construction, 2010(23): 58-59. | |
[34] | 中华人民共和国住房和城乡建设部. 建筑碳排放计算标准: GB/T 51366—2019[S]. 北京: 中国建筑工业出版社. |
[35] | 冯国会, 陈菲, 常莎莎. 近零能耗建筑围护结构多目标优化研究[J]. 沈阳建筑大学学报(自然科学版), 2023, 39(4): 699-706. |
FENG Guohui, CHEN Fei, CHANG Shasha. Multi-objective optimization of envelope structure for near zero energy building[J]. Journal of Shenyang Jianzhu University (Natural Science), 2023, 39(4): 699-706. | |
[36] | 罗中凯, 张立波. 学习路径规划方法[J]. 中国科学院大 学学报, 2024, 41(1): 11-27. |
LUO Zhongkai, ZHANG Libo. Learning path planning methods[J]. Journal of University of Chinese Academy of Sciences, 2024, 41(1): 11-27. | |
[37] | 谢冰川, 张岳, 徐振耀, 等. 基于代理模型的电机多学科优化关键技术综述[J]. 电工技术学报, 2022, 37(20): 5117-5143. |
XIE Bingchuan, ZHANG Yue, XU Zhenyao, et al. Review on multidisciplinary optimization key technology of electrical machine based on surrogate models[J]. Transactions of China Electrotechnical Society, 2022, 37(20): 5117-5143. | |
[38] |
包晓安, 曹云棣, 张娜, 等. 基于格分布方差的多目标云工作流调度算法[J]. 电信科学, 2019, 35(2): 1-13.
doi: 10.11959/j.issn.1000-0801.2019035 |
BAO Xiao'an, CAO Yundi, ZHANG Na, et al. Multi-objective cloud workflow scheduling algorithm based on grid variance[J]. Telecommunications Science, 2019, 35(2): 1-13.
doi: 10.11959/j.issn.1000-0801.2019035 |
[1] | FAN Yanbo, XIONG Yaxuan, LI Xiang, TIAN Xi, YANG Yang. Advancement in multi-objective optimization for building energy use based on genetic algorithms [J]. Integrated Intelligent Energy, 2024, 46(9): 69-85. |
[2] | LI Feifei, XU Huiwei, CUI Jindong. Research on the influencing factors of carbon emissions from petrochemical industry in Jilin Province based on the STIRPAT model [J]. Integrated Intelligent Energy, 2024, 46(8): 12-19. |
[3] | CHEN Yong, XIAO Leiming, WANG Jingnan, WU Jian. Capacity planning method with high reliability for integrated energy systems with low-carbon emissions based on scenario expansion [J]. Integrated Intelligent Energy, 2024, 46(4): 24-33. |
[4] | TANG Zihan, WANG Shuaijie, JU Zhenhe, LEI Zhiqi. Performance optimization of photovoltaic/thermal systems coupled with air source heat pumps [J]. Integrated Intelligent Energy, 2024, 46(4): 34-41. |
[5] | SUN Jian, ZHANG Yunfan, CAI Xiaolong, LIU Dingqun. Optimal scheduling of HVAC systems based on predicted loads [J]. Integrated Intelligent Energy, 2024, 46(3): 12-19. |
[6] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[7] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[8] | KONG Huichao, WANG Wenzhong, LEI Yi, PENG Jing, LI Haibo. Electric power and energy rebalancing method for new power systems at receiving ends of industrial parks [J]. Integrated Intelligent Energy, 2024, 46(2): 68-74. |
[9] | BAI Zhang, HAO Wenjie, LI Qi, HAO hongliang, WEN Caifeng, GUO Su, HUANG Xiankun. Capacity configuration optimization of wind‒solar hydrogen production based on life cycle assessment [J]. Integrated Intelligent Energy, 2024, 46(10): 1-11. |
[10] | ZHANG Li, JIN Li, REN Juguang, LIU Xiaobing. Research on load regulation strategy of integrated energy systems considering meteorological factors and time-of-use tariffs [J]. Integrated Intelligent Energy, 2024, 46(1): 18-27. |
[11] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[12] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[13] | LI Feifei, XU Huiwei, WANG Shuhong, CUI Jindong. Measurement analysis on carbon emissions from agriculture industry in Jilin province and the influencing factors [J]. Integrated Intelligent Energy, 2023, 45(8): 36-43. |
[14] | HE Shuwei, HAN Yinghui, XU Wenbin, ZHANG Yuanxun, SHAN Yulong, YU Yunbo. Simulation for CO2 emissions from private vehicles in Beijing under different energy strategies [J]. Integrated Intelligent Energy, 2023, 45(8): 26-35. |
[15] | LI Fangyi, LI Nan, ZHOU Yan, XIE Wu. Prediction on the regional carbon emission factor for power generation based on multi-dimensional data and deep learning [J]. Integrated Intelligent Energy, 2023, 45(8): 11-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||