Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (3): 84-91.doi: 10.3969/j.issn.2097-0706.2025.03.008
• Load Modeling and Potential Analysis • Previous Articles Next Articles
ZHU Dongjie1(), LYU Kunye2,*(
), SONG Changhong2, JIANG Meihui3,4, LI Zhijiu2
Received:
2024-12-12
Revised:
2025-02-04
Accepted:
2025-03-25
Published:
2025-03-25
Contact:
LYU Kunye
E-mail:zhudongjie80@yeah.net;kunyelv@yeah.net
Supported by:
CLC Number:
ZHU Dongjie, LYU Kunye, SONG Changhong, JIANG Meihui, LI Zhijiu. Linear fitting model for wind power curves based on density correction[J]. Integrated Intelligent Energy, 2025, 47(3): 84-91.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.03.008
[1] | TUNCAR A E, SAĞLAM Ş, ORAL B. A review of short-term wind power generation forecasting methods in recent technological trends[J]. Energy Reports, 2024,12:197-209. |
[2] | LI Y T, WANG P, WU Z Y, et al. Collaborative monitoring of wind turbine performance based on probabilistic power curve comparison[J]. Renewable Energy, 2024, 231:120919. |
[3] | RODRÍGUEZ-LÓPEZ M Á, CERDÁ E, RIO P D. Modeling wind-turbine power curves: Effects of environmental temperature on wind energy generation[J]. Energies, 2020, 13(18):4941. |
[4] | 张真真. 风电机组功率曲线不达标原因分析及优化措施[J]. 分布式能源, 2021, 6(5): 71-76. |
ZHANG Zhenzhen. Cause analysis and optimization measures for wind turbine substandard power curve[J]. Distributed Energy, 2021, 6(5): 71-76. | |
[5] | 黄哲, 高政南, 杭晨辉, 等. 基于历史运行数据的风电场理论输出功率计算方法分析[J]. 内蒙古电力技术, 2016, 34(6): 1-6. |
HUANG Zhe, GAO Zhengnan, HANG Chenhui, et al. Calculation method analysis of theoretical output power of wind farm based on historical running data[J]. Inner Mongolia Electric Power, 2016, 34(6): 1-6. | |
[6] | LIN Q C, CAI H L, LIU H W, et al. A novel ultra-short-term wind power prediction model jointly driven by multiple algorithm optimization and adaptive selection[J]. Energy, 2024, 288:129724. |
[7] |
殷林飞, 蒙雨洁. 基于DenseNet卷积神经网络的短期风电预测方法[J]. 综合智慧能源, 2024, 46(7): 12-20.
doi: 10.3969/j.issn.2097-0706.2024.07.002 |
YIN Linfei, MENG Yujie. Short-term wind power forecasting based on DenseNet convolutional neural networks[J]. Integrated Intelligent Energy, 2024, 46(7): 12-20.
doi: 10.3969/j.issn.2097-0706.2024.07.002 |
|
[8] | 殷林飞, 仝博文, 李雯吉. 基于多尺度卷积-残差网络的短期风电预测[J/OL]. 综合智慧能源,1-10(2024-09-05)[2024-12-01]. http://kns.cnki.net/kcms/detail/41.1461.TK.20240904.1013.002.html. |
YIN Linfei, TONG Bowen, LI Wenji. Multiscale convolution-residual network for short-term wind power forecasting[J/OL]. Integrated Intelligent Energy,1-10(2024-09-05)[2024-12-01]. http://kns.cnki.net/kcms/detail/41.1461.TK.20240904.1013.002.html. | |
[9] | LYDIA M, KUMAR S S, SELVAKUMAR A I, et al. A comprehensive review on wind turbine power curve modeling techniques[J]. Renewable and Sustainable Energy Reviews, 2014, 30:452-460. |
[10] | 沈小军, 付雪姣. 基于改进光滑样条的风电机组功率曲线建模方法[J]. 高电压技术, 2020, 46(7): 2418-2424. |
SHEN Xiaojun, FU Xuejiao. Modeling of wind turbine power curve based on improved smoothing spline[J]. High Voltage Engineering, 2020, 46(7): 2418-2424. | |
[11] | WANG Y, HU Q H, SRINIVASAN D, et al. Wind power curve modeling and wind power forecasting with inconsistent data[J]. IEEE Transactions on Sustainable Energy, 2019, 10(1):16-25. |
[12] | ÜSTÜNTAŞ T, ŞAHIN A D. Wind turbine power curve estimation based on cluster center fuzzy logic modeling[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(5):611-620. |
[13] | LÁZARO R, YÜRÜŞEN N Y, MELERO J J. Wind turbine power curve modelling using gaussian mixture copula, ANN regressive and BANN[J]. Journal of physics. Conference Series, 2022, 2265(3):32083. |
[14] | KOUISSI M, EN-NAIMI E M, ZOUHAIR A. Hybrid approach for wind turbines power curve modeling founded on multi-agent system and two machine learning algorithms, k-means method and the k-nearest neighbors, in the retrieve phase of the dynamic case based reasoning[J]. International Journal of online and Biomedical Engineering, 2022, 18(6):110-122. |
[15] | CAPELLETTI M, RAIMONDO D M, DE NICOLAO G. Wind power curve modeling: A probabilistic Beta regression approach[J]. Renewable Energy, 2024, 223:119970. |
[16] | VIRGOLINO G C M, MATTOS C L C, MAGALHÃES J A F, et al. Gaussian processes with logistic mean function for modeling wind turbine power curves[J]. Renewable Energy, 2020, 162:458-465. |
[17] | WANG Y, DUAN X, SONG D, et al. Wind power curve modeling with large-scale generalized kernel-based regression model[J]. IEEE Transactions on Sustainable Energy, 2023, 14(4):2121-2132. |
[18] | YANG L X, WANG L, ZHANG Z J. Generative wind power curve modeling via machine vision: A deep convolutional network method with data-synthesis-informed-training[J]. IEEE Transactions on Power Systems, 2023, 38(2):1111-1124. |
[19] | ZHA W T, JIN Y, SUN Y L, et al. A wind speed vector-wind power curve modeling method based on data denoising algorithm and the improved Transformer[J]. Electric Power Systems Research, 2023, 214:108838. |
[20] | PRAANJAL N, AHMED E A. Yaw-adjusted wind power curve modeling: A local regression approach[J]. Renewable Energy, 2023, 202:1368-1376. |
[21] | ZHENG Z, YANG L X, ZHANG Z J. Conditional variational autoencoder informed probabilistic wind power curve modeling[J]. IEEE Transactions on Sustainable Energy, 2023, 14(4):2445-2460. |
[22] | WEI D X, WANG J Z, LI Z W, et al. Wind power curve modeling with hybrid copula and grey wolf optimization[J]. IEEE Transactions on Sustainable Energy, 2022, 13(1):265-276. |
[23] | LIU T H, LYU K Y, CHEN F J, et al. Wind power curve model combining smoothed spline with first-order moments and density-adjusted wind speed strategy[J]. Energy, 2024,313:133628. |
[24] | 郭军红, 王小萱, 汪月新, 等. Copula分位数回归方法在风电超短期出力预测上的应用[J]. 工程科学学报, 2024, 46(10): 1921-1929. |
GUO Junhong, WANG Xiaoxuan, WANG Yuexin, et al. Enhancing ultra-short-term wind power forecasting using the Copula quantile regression method[J]. Chinese Journal of Engineering, 2024, 46(10): 1921-1929. | |
[25] | MUSHTAQ K, WARIS A, ZOU R, et al. A comprehensive approach to wind turbine power curve modeling: Addressing outliers and enhancing accuracy[J]. Energy, 2024, 304:131981. |
[26] | PICARD A, DAVIS R S, GLÄSER M, et al. Revised formula for the density of moist air (CIPM—2007)[J]. Metrologia, 2008, 45(2):149-155. |
[27] | PENG C, WANG J, WU D. Impacts of air density fluctuations toward the mass measurements of a 1 kg silicon sphere[J]. IEEE Access, 2020, 8:140840-140847. |
[1] | ZHANG Dongdong, SHAN Linke, LIU Tianhao. Review on the application of artificial intelligence in data mining and wind and photovoltaic power forecasting [J]. Integrated Intelligent Energy, 2025, 47(3): 32-46. |
[2] | JIANG Meihui, XU Zhenjiang, NIU Tongke, ZHU Hongyu, LI Xiang. Intra-day multi-time scale rolling optimization scheduling of mine integrated energy system considering integrated demand response [J]. Integrated Intelligent Energy, 2025, 47(3): 73-83. |
[3] | YIN Linfei, MENG Yujie. Short-term wind power forecasting based on DenseNet convolutional neural networks [J]. Integrated Intelligent Energy, 2024, 46(7): 12-20. |
[4] | ZHANG Xunxiang, WU Jiekang, SUN Yehua, PENG Qijian. Capacity allocation optimization of hybrid energy storage systems considering fluctuation control on offshore wind power [J]. Integrated Intelligent Energy, 2024, 46(6): 54-65. |
[5] | JIANG Shanhe, LI Wei, XU Xiaoyan, WANG Dekai. Short-term wind power forecasting based on variational mode decomposition and generative adversarial networks [J]. Integrated Intelligent Energy, 2024, 46(2): 28-35. |
[6] | WANG Haiming, ZHANG Runzhi, ZHOU Jiahui, XU Gang, GENG Jiaxi. Optimal capacity configuration of off-grid wind-solar hybrid hydrogen production and green ammonia synthesis system [J]. Integrated Intelligent Energy, 2024, 46(11): 73-82. |
[7] | MA Yanhong, LYU Qingquan, ZHANG Zhenzhen, ZHAO Long, ZHOU Qiang, GAO Pengfei. Wind power fluctuation mitigation strategy based on double Kalman filter considering the SOC of the energy storage system [J]. Integrated Intelligent Energy, 2023, 45(2): 61-68. |
[8] | WANG Kaiting, LI Xiaobin, ZHANG Hongna, LIU Shen, QU Kaiyang, LI Fengchen. Comprehensive evaluation for energy saving and emission reduction performance of turbulent drag reducing agent in heating systems [J]. Integrated Intelligent Energy, 2022, 44(9): 40-50. |
[9] | LI Hua, ZHENG Hongwei, ZHOU Bowen, LI Guangdi, YANG Bo. Two-part tariff for pumped storage power plants in an integrated intelligent energy system [J]. Integrated Intelligent Energy, 2022, 44(7): 10-18. |
[10] | WANG Xin, CHEN Zucui, BIAN Zaiping, WANG Yeyao, WU Yumiao. Optimal allocation of a wind‒PV‒battery hybrid system in smart microgrid based on particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2022, 44(6): 52-58. |
[11] | Leijiao GE, Qingxue CUI, Mingwei LI, Fang YAO, Xiaona YANG, Tianshuo DU. Review on water electrolysis for hydrogen production powered by fluctuating wind power and PV [J]. Integrated Intelligent Energy, 2022, 44(5): 1-14. |
[12] | Chang YAN, Sheng HUANG, Yinpeng QU. Review on hydrogen production technology from offshore wind power to achieve carbon neutrality [J]. Integrated Intelligent Energy, 2022, 44(5): 30-40. |
[13] | Feng WANG, Peng LU, Qingtao ZHANG, Hui ZHAO, Huaiming WANG, Yangyang RU. Development trend and prospects of hydrogen production from offshore wind power [J]. Integrated Intelligent Energy, 2022, 44(5): 41-48. |
[14] | Xinye DU, Jianxi WANG, Yonghui SUN, Yi HE, Pengpeng WU, Wei ZHOU. Optimal planning of hybrid energy storage systems in microgrids considering seawater desalination and hydrogen production [J]. Integrated Intelligent Energy, 2022, 44(5): 49-55. |
[15] | CHEN Tiantian, GAO Yajing, LU Zhanhui. Research on improved fuzzy mean curve clustering method based on two-scale measurement [J]. Integrated Intelligent Energy, 2022, 44(4): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||