Huadian Technology ›› 2021, Vol. 43 ›› Issue (10): 43-49.doi: 10.3969/j.issn.1674-1951.2021.10.005
• Topic Review • Previous Articles Next Articles
ZHANG Kaiping1, ZHANG Hongfu1, GAO Mingming1,*(), WANG Yong2, MA Cong2
Received:
2021-05-07
Revised:
2021-06-07
Published:
2021-10-25
Contact:
GAO Mingming
E-mail:gmm1@ncepu.edu.cn
CLC Number:
ZHANG Kaiping, ZHANG Hongfu, GAO Mingming, WANG Yong, MA Cong. Research progress on biomass power generation in CFB boilers[J]. Huadian Technology, 2021, 43(10): 43-49.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.10.005
[1] | 蔡勖. 国内生物质发电现状及应用前景[J]. 科学技术创新, 2019(28): 195-196. |
[2] | 童家麟, 吕洪坤, 齐晓娟, 等. 国内生物质发电现状及应用前景[J]. 浙江电力, 2017, 36(3): 62-66. |
TONG Jialin, LYU Hongkun, QI Xiaojuan, et al. Status quo and application prospect of domestic biomass power generation[J]. Zhejiang Electric Power, 2017, 36(3): 62-66. | |
[3] | 张东旺, 范浩东, 赵冰, 等. 国内外生物质能源发电技术应用进展[J]. 华电技术, 2021, 43(3): 70-75. |
ZHANG Dongwang, FAN Haodong, ZHAO Bing, et al. Development of biomass power generation technology at home and abroad[J]. Huadian Technology, 2021, 43(3): 70-75. | |
[4] | 张恒立. 生物质燃烧过程受热面沉积形成及抑制机理研究[D]. 杭州:浙江大学, 2020. |
[5] | 焦耀华. 我国生物质能源产业的发展前景探究[J]. 经济研究导刊, 2020(25): 44-45. |
[6] | 高明明. 大型循环流化床锅炉燃烧状态监测研究[D]. 北京:华北电力大学, 2013. |
[7] | 傅安强. 国内生物质电厂发电技术及设备发展前景[J]. 福建建材, 2020(3): 105-107. |
[8] | 包绍麟, 李诗媛, 吕清刚, 等. 130 t/h生物质直燃循环流化床锅炉设计与运行[J]. 工业锅炉, 2013(2): 19-22. |
BAO Shaolin, LI Shiyuan, LÜ Qinggang. Design & operation of 130 t/h circulating fluidized bed boilers with 100% biomass[J]. Industrial Boilers, 2013(2): 19-22. | |
[9] | 李诗媛, 吕清刚, 王东宇, 等. 生物质直燃循环流化床发电锅炉设计准则和运行分析[J]. 可再生能源, 2012, 30(12): 96-100. |
LI Shiyuan, LYU Qinggang, WANG Dongyu, et al. Design and operation of biomass direct-fired circulating fluidized bed boilers[J]. Renewable Energy Resources, 2012, 30(12): 96-100. | |
[10] | 张建春, 顾君苹, 张缦, 等. 纯燃生物质循环流化床锅炉设计与运行[J]. 锅炉技术, 2018, 49(1): 28-32,64. |
ZHANG Jianchun, GU Junping, ZHANG Man, et al. The design and operation of a pure biomass-fired circulating fluidized bed boilers[J]. Boiler Technology, 2018, 49(1): 28-32,64. | |
[11] | 李俊英. 生物质直燃循环流化床发电的防腐探讨[C]// 中国石油和化工勘察设计协会热工设计专业委员会,全国化工热工设计技术中心站年会, 2014. |
[12] | 肖志前, 宋杰, 宋景慧. 生物质锅炉混煤掺烧对锅炉经济性及稳定性的影响[J]. 广东电力, 2015, 28(7): 10-16,23. |
XIAO Zhiqian, SONG Jie, SONG Jinghui. Affect on economy and stability by blended coal combustion of biomass boiler[J]. Guangdong Electric Power, 2015, 28(7): 10-16,23. | |
[13] | 别如山, 王庆功, 修太春. 生物质燃烧发电过程中若干问题的探讨[J]. 工业锅炉, 2009(6): 6-10. |
BIE Rushan, WANG Qinggong, XIU Taichun. Discussions on biomass combustion in the process of generating electricity[J]. Industrial Boilers, 2009(6): 6-10. | |
[14] | 别如山, 杨文, 宋兴飞. 采用流化床或低倍率循环流化床燃烧生物质发电的建议[J]. 工业锅炉, 2010(2): 1-3. |
BIE Rushan, YANG Wen, SONG Xingfei. Fluidized bed or low ratio circulating fluidized bed recommended for biomass electricity generation[J]. Industrial Boilers, 2010(2): 1-3. | |
[15] | 何德峰, 张永达, 徐山, 等. 生物质循环流化床锅炉燃烧过程多目标经济预测控制[J]. 高技术通讯, 2019, 29(7): 668-674. |
HE Defeng, ZHANG Yongda, XU Shan. Multi-objective economic predictive control of biomass CFBB combustion processes[J]. Chinese High Technology Letters, 2019, 29(7): 668-674. | |
[16] | 马务, 盛昌栋. 基于循环流化床气化的间接耦合生物质发电技术应用现状[J]. 热力发电, 2019, 48(4): 1-7. |
MA Wu, SHENG Changdong. Application status of indirect biomass co-firing power generation technologies based on circulating fluidized bed gasification[J]. Thermal Power Generation, 2019, 48(4): 1-7. | |
[17] | 王剑利, 张金柱, 吉金芳, 等. 生物质燃煤耦合发电技术现状及建议[J]. 华电技术, 2019, 41(11): 32-35. |
WANG Jianli, ZHANG Jinzhu, JI Jinfang, et al. Current status and suggestions on biomass-coal coupled power generation technology[J]. Huadian Technology, 2019, 41(11): 32-35. | |
[18] | 刘方金. 生物质循环流化床气化过程分析及试验[D]. 天津:天津大学, 2007. |
[19] | 王红梅, 张现飞, 张兰珍, 等. 流化床生物质气化发电过程动力学建模与验证[J]. 可再生能源, 2011, 29(4): 48-52,57. |
WANG Hongmei, ZHANG Xianfei, ZHANG Lanzhen, et al. Kinetic modeling and verification of the biomass gasification by fluidized bed[J]. Renewable Energy Resources, 2011, 29(4): 48-52,57. | |
[20] | 董智慧. 生物质气化系统与燃煤循环流化床锅炉系统集成模拟[D]. 北京:华北电力大学, 2011. |
[21] | 肖陆飞, 哈云, 孟飞, 等. 生物质气化技术研究与应用进展[J]. 现代化工, 2020, 40(12): 68-72,76. |
XIAO Lufei, HA Yun, MENG Fei, et al. Research and application progress on biomass gasification technologies[J]. Modern Chemical Industry, 2020, 40(12): 68-72,76. | |
[22] | 刘文杰, 仲兆平. 生物质气化催化剂的研究现状[J]. 能源研究与利用, 2006(5): 5-8. |
LIU Wenjie, ZHONG Zhaoping. The current status of biomass gasification catalysis[J]. Energy Research & Utilization, 2006(5): 5-8. | |
[23] | 陈昊. 生物质热载体循环流化床气化系统集成[D]. 北京:北京化工大学, 2016. |
[24] |
MUNIR S, NIMMO W, GIBBS B M. The effect of air staged,co-combustion of pulverised coal and biomass blends on NOx emissions and combustion efficiency[J]. Fuel, 2011, 90(1): 126-135.
doi: 10.1016/j.fuel.2010.07.052 |
[25] | 张小英, 马晓茜, 邹治平. 循环流化床中谷壳与煤共燃SO2生成特性研究[J]. 煤炭转化, 2005, 28(4): 50-52. |
ZHANG Xiaoying, MA Xiaoqian, ZOU Zhiping. Study on generation of SO2 during co-combustion of biomass and coal in circulating fluidized bed[J]. Coal Conversion, 2005, 28(4): 50-52. | |
[26] | 任罡. 生物质与煤混燃特性研究与工程应用[D]. 北京:华北电力大学, 2014. |
[27] | 鲁许鳌, 孙磊, 李永华. 不同燃料间生物质与煤共燃系统热力分析[J]. 节能, 2018, 37(12): 62-66. |
LU Xuao, SUN Lei, LI Yonghua. Effects of biomass species on biomass and coal cofiring system[J]. Energy Conservation, 2018, 37(12): 62-66. | |
[28] | 刘家利, 王志超, 邓凤娇, 等. 大型煤粉电站锅炉直接掺烧生物质研究进展[J]. 洁净煤技术, 2019, 25(5): 17-23. |
LIU Jiali, WANG Zhichao, DENG Fengjiao, et al. Research progress on direct blending biomass in pulverized coal fired boilers of large power plants[J]. Clean Coal Technology, 2019, 25(5): 17-23. | |
[29] | 兰凤春, 李晓宇, 龙辉. 欧洲大型燃煤锅炉耦合生物质发电技术综述[J]. 华电技术, 2020, 42(10): 88-94. |
LAN Fengchun, LI Xiaoyu, LONG Hui. Review of biomass power generation technology coupled with large coal-fired boilers in Europe[J]. Huadian Technology, 2020, 42(10): 88-94. | |
[30] | 李学锋, 牛建新, 王荣涛. 75 t/h循环流化床锅炉掺烧生物质技术改造探讨[J]. 能源研究与利用, 2007(3): 32-35. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | SONG Jianjun, FU Kun, CHEN Meiqian. Simulation on the gas-solid flows and combustion in a multi-pass circulating fluidized bed based on computational particle fluid dynamics method [J]. Integrated Intelligent Energy, 2024, 46(8): 59-66. |
[3] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[4] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[5] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[6] | TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality [J]. Integrated Intelligent Energy, 2023, 45(8): 53-63. |
[7] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[8] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[9] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[10] | WU Tong, WANG Shouxin, CHENG Xingxing, LIU Kunkun. Analysis of material and energy flows in biomass resource utilization under industrial symbiosis system [J]. Integrated Intelligent Energy, 2023, 45(7): 30-39. |
[11] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
[12] | ZHAO Guotao, QIAN Guoming, SUN Yanbing, DING Quan, ZHU Haidong. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation [J]. Integrated Intelligent Energy, 2023, 45(6): 73-80. |
[13] | LIU Ziqi, SU Tingting, HE Jiayang, WANG Yu. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(6): 9-16. |
[14] | ZHOU Shuxin, FAN Huailin, HU Xun. Preparation of biomass-based carbon materials and its application as electrodes in supercapacitors [J]. Integrated Intelligent Energy, 2023, 45(5): 1-12. |
[15] | FAN Dekai, FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun. Review on the preparation of high-value chemicals from cellulose pyrolysis [J]. Integrated Intelligent Energy, 2023, 45(5): 24-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||