Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (12): 20-28.doi: 10.3969/j.issn.2097-0706.2023.12.003
• Intelligent & Clean Heating • Previous Articles Next Articles
LIU Yuanyuan1(), LIU Fangfang2, JIA Tianxiang1, HAN Zhao3, SHANG Yongqiang1, JIANG Shu4
Received:
2023-07-17
Revised:
2023-10-23
Published:
2023-12-25
Supported by:
CLC Number:
LIU Yuanyuan, LIU Fangfang, JIA Tianxiang, HAN Zhao, SHANG Yongqiang, JIANG Shu. Design of the integrated energy heating(cooling) system for a commercial and residential park and its economy analysis[J]. Integrated Intelligent Energy, 2023, 45(12): 20-28.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.12.003
Table 1
Outdoor design parameters of the air conditioning system
计算参数 | 值 | |
---|---|---|
年平均温度/℃ | 13.4 | |
室外计算温度、湿度 | 冬季供暖室外计算温度/℃ | -6.2 |
冬季空气调节室外计算温度/℃ | -8.8 | |
冬季空气调节室外计算相对湿度/% | 55 | |
夏季空气调节室外计算干球温度/℃ | 35.1 | |
夏季空气调节室外计算湿球温度/℃ | 26.8 | |
夏季空气调节室外计算日平均温度/℃ | 30.0 | |
夏季通风室外计算温度/℃ | 30.8 | |
夏季通风室外计算相对湿度/% | 60 | |
室外风速 | 夏季室外风速平均/(m·s-1) | 1.7 |
冬季室外风速平均/(m·s-1) | 1.8 | |
大气压力 | 夏季大气压力/hPa | 995.8 |
冬季大气压力/hPa | 1 017.2 | |
计算参数 | 平均气温≤5 ℃期间的平均温度/℃ | 0.1 |
Table 3
Analysis on cooling units' capacities
地埋管数/根 | 土壤源热泵装机/kW | 设计冷负荷/kW | 冷水机组装机/kW | 设备投资额/万元 | 夏季耗电量/(MW⋅h) |
---|---|---|---|---|---|
100 | 504 | 5 645 | 5 141 | 967 | 1 507.5 |
200 | 1 008 | 5 645 | 4 637 | 1 087 | 1 440.4 |
300 | 1 512 | 5 645 | 4 133 | 1 207 | 1 373.2 |
400 | 2 016 | 5 645 | 3 629 | 1 327 | 1 306.1 |
500 | 2 520 | 5 645 | 3 125 | 1 447 | 1 238.9 |
600 | 3 024 | 5 645 | 2 621 | 1 567 | 1 172.0 |
Table 5
Comparative analysis on heating cost
热源方式 | 耗能方式 | 电价时段 | 电价/[元⋅(kW⋅h)-1] | 供热成本/(元⋅GJ-1) |
---|---|---|---|---|
土壤源热泵(COP取4.4) | 耗电① | 低谷时段 | 0.368 | 22.70 |
平段时段 | 0.674 | 41.60 | ||
高峰时段 | 0.980 | 60.49 | ||
尖峰时段 | 1.128 | 69.63 | ||
空气源热泵(COP取3.0) | 耗电① | 低谷时段 | 0.368 | 34.10 |
平段时段 | 0.674 | 62.40 | ||
高峰时段 | 0.980 | 90.74 | ||
尖峰时段 | 1.128 | 104.44 | ||
集中热网 | 耗电②+购热(购热价39.72元/GJ) | 低谷时段 | 0.368 | 42.56 |
平段时段 | 0.674 | 44.92 | ||
高峰时段 | 0.984 | 47.31 | ||
电锅炉 | 耗电①(热效率98%) | 低谷时段 | 0.368 | 107.50 |
Table 6
Operation strategy under 100% cooling load kW
时段 | 设计冷负荷 | 主机供冷 | 蓄冷 | 放冷 | |
---|---|---|---|---|---|
低谷 | 00:00—01:00 | 0 | 0 | — | — |
01:00—02:00 | 0 | 0 | — | — | |
02:00—03:00 | 0 | 0 | 3 908 | — | |
03:00—04:00 | 0 | 0 | 3 908 | — | |
04:00—05:00 | 0 | 0 | 3 908 | — | |
05:00—06:00 | 0 | 0 | 3 908 | — | |
06:00—07:00 | 0 | 0 | 3 000 | — | |
07:00—08:00 | 0 | 0 | — | — | |
平段 | 08:00—09:00 | 2 258 | 2 258 | — | — |
09:00—10:00 | 2 822 | 2 822 | — | — | |
10:00—11:00 | 4 290 | 3 908 | — | 382 | |
11:00—12:00 | 4 516 | 3 908 | — | 608 | |
12:00—13:00 | 4 967 | 3 908 | — | 1 059 | |
13:00—14:00 | 5 306 | 3 908 | — | 1 398 | |
14:00—15:00 | 5 419 | 3 908 | — | 1 511 | |
高峰 | 15:00—16:00 | 5 645 | 3 908 | — | 1 737 |
16:00—17:00 | 5 419 | 3 908 | — | 1 511 | |
17:00—18:00 | 4 798 | 3 908 | — | 890 | |
18:00—19:00 | 4 516 | 3 908 | — | 608 | |
尖峰 | 19:00—20:00 | 3 613 | 0 | — | 3 613 |
20:00—21:00 | 2 822 | 0 | — | 2 822 | |
21:00—22:00 | 2 258 | 0 | — | 2 258 | |
高峰 | 22:00—23:00 | 0 | 0 | — | — |
平段 | 23:00—24:00 | 0 | 0 | — | — |
合计 | 58 649 | 40 252 | 18 632 | 18 397 |
Table 7
Operation strategy under 100% heating load kW
时段 | 时间 | 总热负荷 | 主机供热 | 蓄热 | 放热 |
---|---|---|---|---|---|
平段 | 00:00—01:00 | 4 377 | 4 377 | — | — |
低谷 | 01:00—02:00 | 3 409 | 3 409 | 8 000 | — |
02:00—03:00 | 2 856 | 2 856 | 8 000 | — | |
03:00—04:00 | 2 856 | 2 856 | 8 000 | — | |
04:00—05:00 | 2 856 | 2 856 | 8 000 | — | |
05:00—06:00 | 3 201 | 3 201 | 8 000 | — | |
平段 | 06:00—07:00 | 3 754 | 2 300 | — | 1 454 |
07:00—08:00 | 5 483 | 2 300 | — | 3 183 | |
08:00—09:00 | 4 653 | 2 300 | — | 2 353 | |
09:00—10:00 | 7 281 | 2 300 | — | 4 981 | |
10:00—11:00 | 5 036 | 2 300 | — | 2 736 | |
11:00—12:00 | 5 309 | 2 300 | — | 3 009 | |
低谷 | 12:00—13:00 | 5 031 | 5 031 | 8 000 | — |
13:00—14:00 | 4 531 | 4 531 | 8 000 | — | |
14:00—15:00 | 4 406 | 4 406 | 8 000 | — | |
平段 | 15:00—16:00 | 4 211 | 4 211 | — | — |
高峰 | 16:00—17:00 | 4 169 | 0 | — | 4 169 |
尖峰 | 17:00—18:00 | 5 734 | 0 | — | 5 734 |
18:00—19:00 | 6 386 | 0 | — | 6 386 | |
高峰 | 19:00—20:00 | 6 469 | 0 | — | 6 469 |
20:00—21:00 | 6 246 | 0 | — | 6 246 | |
21:00—22:00 | 5 858 | 0 | — | 5 858 | |
22:00—23:00 | 5 621 | 0 | — | 5 621 | |
23:00—24:00 | 5 484 | 0 | — | 5 484 | |
合计 | 115 216 | 51 532 | 64 000 | 63 683 |
Table 8
Operation strategy under 100% heating load(in extreme cold period) kW
时段 | 时间 | 总热负荷 | 主机供热 | 蓄热 | 放热 |
---|---|---|---|---|---|
平段 | 00:00—01:00 | 4 377 | 4 377 | — | — |
低谷 | 01:00—02:00 | 3 409 | 3 409 | 2 000 | — |
02:00—03:00 | 2 856 | 2 856 | 2 000 | — | |
03:00—04:00 | 2 856 | 2 856 | 2 000 | — | |
04:00—05:00 | 2 856 | 2 856 | 2 000 | — | |
05:00—06:00 | 3 201 | 3 201 | 2 000 | — | |
平段 | 06:00—07:00 | 3 754 | 3 754 | — | — |
07:00—08:00 | 5 483 | 5 483 | — | — | |
08:00—09:00 | 4 653 | 4 653 | — | — | |
09:00—10:00 | 7 281 | 7 281 | — | — | |
10:00—11:00 | 5 036 | 5 036 | — | — | |
11:00—12:00 | 5 309 | 5 309 | — | — | |
低谷 | 12:00—13:00 | 5 031 | 5 031 | — | — |
13:00—14:00 | 4 531 | 4 531 | — | — | |
14:00—15:00 | 4 406 | 4 406 | — | — | |
平段 | 15:00—16:00 | 4 211 | 4 211 | — | — |
高峰 | 16:00—17:00 | 4 169 | 4 169 | — | — |
尖峰 | 17:00—18:00 | 5 734 | 734 | — | 5 000 |
18:00—19:00 | 6 386 | 1 386 | — | 5 000 | |
高峰 | 19:00—20:00 | 6 469 | 6 469 | — | — |
20:00—21:00 | 6 246 | 6 246 | — | — | |
21:00—22:00 | 5 858 | 5 858 | — | — | |
22:00—23:00 | 5 621 | 5 621 | — | — | |
23:00—24:00 | 5 484 | 5 484 | — | — | |
合计 | 115 216 | 105 216 | 10 000 | 10 000 |
[1] | 中国建筑能耗研究报告2020[J]. 建筑节能(中英文), 2021, 49(2):1-6. |
China building energy consumption annual report 2020[J]. Building Energy Efficiency, 2021, 49(2):1-6. | |
[2] | 江亿. 我国建筑能耗趋势与节能重点[J]. 建设科技, 2006(7):10-13,15. |
JIANG Yi. The trend and important energy efficiency points in our country[J]. Construction Science and Technology, 2006(7):10-13,15. | |
[3] | 方豪, 夏建军, 林波荣, 等. 北方城市清洁供暖现状和技术路线研究[J]. 区域供热, 2018(1):11-18. |
FANG Hao, XIA Jianjun, LIN Borong, et al. Study on the current situation and technical route of clean heating in northern cities[J]. District Heating, 2018(1):11-18. | |
[4] | 龙惟定. 夏热冬冷地区住宅供暖问题刍议[J]. 暖通空调, 2013, 43(6):42-49. |
LONG Weiding. Comment on residential building heating in hot summer and cold winter zone[J]. Heating Ventilating & Air Conditioning, 2013, 43(6):42-49. | |
[5] | 李丹, 张华玲. 南方供暖需求现状及技术分析[J]. 制冷与空调, 2013, 27(6):621-625. |
LI Dan, ZHANG Hualing. The demand status and technology analysis of southern heating[J]. Refrigeration & Air Conditioning, 2013, 27(6):621-625. | |
[6] | 康艳兵, 张建国, 张扬. 我国热电联产集中供热的发展现状、问题与建议[J]. 中国能源, 2008, 30(10):8-13. |
KANG Yanbing, ZHANG Jianguo, ZHANG Yang. Study on current status, barriers and recommendations of China's CHP/DHC market development[J]. Energy of China, 2008, 30(10):8-13. | |
[7] | 龙惟定, 梁浩. 我国城市建筑碳达峰与碳中和路径探讨[J]. 暖通空调, 2021, 51(4):1-17. |
LONG Weiding, LIANG Hao. Discussion on paths of carbon peak and carbon neutrality of urban buildings in China[J]. Heating Ventilating & Air Conditioning, 2021, 51(4):1-17. | |
[8] | 刁乃仁, 方肇洪. 地源热泵——建筑节能新技术[J]. 建筑热能通风空调, 2004, 23(3):18-23. |
DIAO Nairen, FANG Zhaohong. Ground source heat pumps—A promising technology for energy conservation in buildings[J]. Building Energy & Environment, 2004, 23(3):18-23. | |
[9] | 王沣浩, 王志华, 郑煜鑫, 等. 低温环境下空气源热泵的研究现状及展望[J]. 制冷学报, 2013, 34(5):47-54. |
WANG Fenghao, WANG Zhihua, ZHENG Yuxin, et al. Research progress and prospect of air source heat pump in low temperature environment[J]. Journal of Refrigeration, 2013, 34(5):47-54. | |
[10] | 常世钧, 龚光彩. 冷热源及建筑节能的研究现状和进展[J]. 建筑热能通风空调, 2003, 22(5):18-23. |
CHANG Shijun, GONG Guangcai. Research situation on cool and heat source as well as building energy conservation[J]. Building Energy & Environment, 2003, 22(5):18-23. | |
[11] |
EKREN O, EKREN B Y. Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing[J]. Applied Energy, 2010, 87(2):592-598.
doi: 10.1016/j.apenergy.2009.05.022 |
[12] | 付文锋, 李嘉华, 王蓝婧, 等. 基于动态自适应粒子群算法的二次再热燃煤-捕碳机组热力系统优化设计[J]. 中国电机工程学报, 2017, 37(9):2652-2659. |
FU Wenfeng, LI Jiahua, WANG Lanjing, et al. Optimal design for thermodynamics system of double reheat coal-fired power plants with post-combustion carbon capture based on dynamic adaptive particle swarm optimization[J]. Proceedings of the CSEE, 2017, 37(9):2652-2660. | |
[13] | 龙惟定. 绿色产业园区的需求侧能源规划[J]. 上海节能, 2016, 334(10):533-539. |
LONG Weiding. Demand side energy planning of green industry park[J]. Shanghai Energy Saving, 2016, 334(10):533-539. | |
[14] | 顾伟, 陆帅, 王珺, 等. 多区域综合能源系统热网建模及系统运行优化[J]. 中国电机工程学报, 2017, 37(5):1305-1316. |
GU Wei, LU Shuai, WANG Jun, et al. Modeling of the heating network for multi-district integrated energy system and its operation optimization[J]. Proceedings of the CSEE, 2017, 37(5):1305-1316. | |
[15] | 熊显智, 程晓绚, 李嘉丰, 等. 多能互补的综合能源供热系统工程设计及优化[J]. 全球能源互联网, 2021, 4(2):153-162. |
XIONG Xianzhi, CHENG Xiaoxuan, LI Jiafeng, et al. Engineering design and optimization of multi-energy heating systems[J]. Journal of Global Energy Interconnection, 2021, 4(2):153-162. | |
[16] | 吴迪. 综合能源系统优化设计方法与运行特性研究[D]. 北京: 华北电力大学, 2021. |
WU Di. Research on optimization design method and operation performances of integrated energy system[D]. Beijing: North China Electric Power University, 2021. | |
[17] | 郇嘉嘉, 赵瑾, 曾诚玉, 等. 园区综合能源系统规划及优化配置方案[J]. 现代电力, 2020, 37(3):303-309. |
HUAN Jiajia, ZHAO Jin, ZENG Chengyu, et al. Integrated energy system planning in parks and optimal allocation schemes[J]. Modern Electric Power, 2020, 37(3):303-309. | |
[18] |
丁月清, 洪增林, 金光, 等. 关中地区清洁能源供暖综合效益评价——西安某商业建筑的案例实证[J]. 自然资源学报, 2020, 35(11):2759-2769.
doi: 10.31497/zrzyxb.20201115 |
DING Yueqing, HONG Zenglin, JIN Guang, et al. Calculation and evaluation of the comprehensive benefit ratio of clean energy utilization:Taking clean energy heating in guanzhong plain as an example[J]. Journal of Natural Resources, 2020, 35(11):2759-2769.
doi: 10.31497/zrzyxb.20201115 |
|
[19] |
刘自发, 谭雅之, 李炯, 等. 区域综合能源系统规划关键问题研究综述[J]. 综合智慧能源, 2022, 44(6):12-24.
doi: 10.3969/j.issn.2097-0706.2022.06.002 |
LIU Zifa, TAN Yazhi, LI Jiong, et al. Review on key points in the planning for a district-level integrated energy system[J]. Integrated Intelligent Energy, 2022, 44(6):12-24.
doi: 10.3969/j.issn.2097-0706.2022.06.002 |
|
[20] |
余莉, 徐静静, 马兰芳, 等. 综合能源服务项目新增热泵系统的案例分析[J]. 综合智慧能源, 2022, 44(1):72-79.
doi: 10.3969/j.issn.2097-0706.2022.01.010 |
YU Li, XU Jingjing, MA Lanfang, et al. Case study on the integrated energy service project with newly installed heat pumps[J]. Integrated Intelligent Energy, 2022, 44(1):72-79.
doi: 10.3969/j.issn.2097-0706.2022.01.010 |
|
[21] |
郭祚刚, 袁智勇, 徐敏, 等. 多能互补综合能源系统混合能流计算方法及算例[J]. 综合智慧能源, 2022, 44(7):58-65.
doi: 10.3969/j.issn.2097-0706.2022.07.007 |
GUO Zuogang, YUAN Zhiyong, XU Min, et al. Multi-energy flow calculation method for multi-energy complementary integrated energy systems[J]. Integrated Intelligent Energy, 2022, 44(7):58-65.
doi: 10.3969/j.issn.2097-0706.2022.07.007 |
|
[22] |
赵建立, 汤卓凡, 王桂林, 等. 具有储能作用的用户侧资源运行特性[J]. 综合智慧能源, 2022, 44(2): 8-14.
doi: 10.3969/j.issn.2097-0706.2022.02.002 |
ZHAO Jianli, TANG Zhuofan, WANG Guilin, et al. Operation characteristics of user-side resources with energy storage function[J]. Integrated Intelligent Energy, 2022, 44(2): 8-14.
doi: 10.3969/j.issn.2097-0706.2022.02.002 |
|
[23] | 方旭, 彭雪风, 张凯, 等. 燃煤热电联产系统冷端余能供热改造研究进展[J]. 华电技术, 2021, 43(3): 48-56. |
FANG Xu, PENG Xuefeng, ZHANG Kai, et al. Development of heating retrofit using waste heat from coal-fired CHP system cold end[J]. Huadian Technology, 2021, 43(3): 48-56. |
[1] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[2] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[3] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[4] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[5] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[6] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[7] | SHI Mingming, ZHU Rui, LIU Ruihuang. Joint economic dispatch of an AC/DC power system and a heating system [J]. Integrated Intelligent Energy, 2024, 46(4): 10-16. |
[8] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[9] | CHEN Yong, XIAO Leiming, WANG Jingnan, WU Jian. Capacity planning method with high reliability for integrated energy systems with low-carbon emissions based on scenario expansion [J]. Integrated Intelligent Energy, 2024, 46(4): 24-33. |
[10] | WANG Jinglong, WANG Hui, YANG Ye, ZHENG Yingying. Collaborative optimization method for power-heat-gas integrated energy systems considering multiple uncertainties [J]. Integrated Intelligent Energy, 2024, 46(4): 42-51. |
[11] | ZHONG Yongjie, WANG Zidong, ZUO Jianxun, WANG Changqing, LI Jingxia, JI Ling. Economic dispatch of multi-energy complementary systems considering multi-period scales and regional stratification [J]. Integrated Intelligent Energy, 2024, 46(4): 52-59. |
[12] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[13] | MENG Qiang, TIAN Xi, XIONG Yaxuan. Study on preparation of shape-stable phase-change materials based on cellular concrete and their performances [J]. Integrated Intelligent Energy, 2024, 46(3): 29-34. |
[14] | XU Cong, HU Yongfeng, ZHANG Aiping, YOU Changfu. Multi-load day-ahead and intra-day forecasting for integrated energy systems based on feature screening [J]. Integrated Intelligent Energy, 2024, 46(3): 45-53. |
[15] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||