Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (8): 44-52.doi: 10.3969/j.issn.2097-0706.2023.08.006
• Dual Carbon Projects • Previous Articles Next Articles
LIU Tianyang(), GAO Yajing(), XIE Dian*(), ZHAO Liang()
Received:
2023-05-20
Revised:
2023-07-15
Accepted:
2023-08-25
Published:
2023-08-25
Supported by:
CLC Number:
LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks[J]. Integrated Intelligent Energy, 2023, 45(8): 44-52.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.08.006
Table 1
Practical cases of zero-carbon parks in China
园区名称 | 具体措施 |
---|---|
鄂尔多斯产业园 | (1)100%零碳能源供给;(2)构建“绿色能源+交通+化工”零碳新工业体系;(3)“能碳双控”数字化管理平台 |
青岛中德生态园 | (1)建立生态指标体系,统领区域绿色生态发展;(2)构建多元化清洁能源供给体系,打造青岛市“非煤化”试点区域;(3)发展被动式超低能耗和装配式建筑,100%实施绿色施工、绿色建筑;(4)建设园区零碳操作系统,发挥数据要素倍增效应 |
重庆AI City园区 | (1)推进建筑节能,碳中和理念贯彻建筑全生命周期;(2)打造光电建筑实现园区能源自给;(3)“智能大脑”实现智慧管理运营 |
海信江门园区 | (1)强化布局优化,有计划有目标地推进零碳智慧园区建设;(2)搭建能源管理平台,通过信息化节能实现智慧能源管理;(3)全方位、多层次实施生产过程节能措施,持续提升制造效率 |
上海桃浦智创城 | (1)打破数据孤岛,实现数据共享;(2)能源精细化管理,降能耗、提能效;(3)AI优化控制,有效提高系统运行效率 |
紫光萧山园区 | (1)利用新能源技术和储能技术,改善园区碳排放现状并减少能源支出;(2)进行全量碳数据汇总,助力智能园区后续产业链优化;(3)借助绿洲·能源管理平台,实现各类能源数据全面管理及趋势分析 |
[1] | IPCC. Climate change 2022: mitigation of climate change[EB/OL].(2022-04-29)[2023-06-10]. https://www.ipcc.ch/report/sixth-assessment-reportworking-group-3. |
[2] | 王超, 孙福全, 许晔. 世界主要经济体碳中和战略剖析及启示[J]. 世界科技研究与发展, 2020, 12:1-15. |
WANG Chao, SUN Fuquan, XU Ye. Analysis and enlightenment of carbon neutrality strategy of the world's major economies[J]. World Scientific Technological Research Development, 2020, 12:1-15. | |
[3] | 陈晓娟, 朱赞. “双碳”背景下低碳园区的发展模式研究[J]. 大众用电, 2022, 37(10): 30-32. |
CHEN Xiaojuan, ZHU Zan. Research on the development mode of low-carbon parks under the background of emission peak and carbon neutrality[J]. Public Electricity Consumption, 2022, 37(10):30-32. | |
[4] | 尹华琛, 周谢蕴. 国内外典型城市和园区低碳发展模式研究[J]. 上海节能, 2022(4): 363-369. |
YIN Huachen, ZHOU Xieyun. Study on low-carbon development mode of typical cities and parks at home and abroad[J]. Shanghai Energy Conservation, 2022(4): 363-369. | |
[5] | 刘磊, 杨文海. 我国碳中和产业园区建设探析[J]. 城乡建设, 2021(9): 38-40. |
LIU lei, YANG Wenhai. Analysis on the construction of chinese carbon neutralization industrial parks[J]. Urban and Rural Construction, 2021(9):38-40. | |
[6] |
HUANG W J, DU E S, CAPUDER T, et al. Reliability and vulnerability assessment of multi-energy systems:An energy hub based method[J]. IEEE Transactions on Power Systems, 2021, 36(5) :3948-3959.
doi: 10.1109/TPWRS.2021.3057724 |
[7] | GE L J, LI Y L, YAN J, et al. Short-term load prediction of integrated energy system with wavelet neural network model based on improved particle swarm optimization and chaos optimization algorithm[J]. Journal of Modern Power Systems and Clean Energy, 2021, 19(6): 1490-1499. |
[8] | 林晓明, 张勇军, 陈伯达, 等. 计及多评价指标的园区能源互联网双层优化配置[J]. 电力系统自动化, 2019, 43(20): 8-15, 30. |
LIN Xiaoming, ZHANG Yongjun, CHEN Boda, et al. Bi-level optimal configuration of park energy internet considering multiple evaluation indicators[J]. Automation of Electric Power Systems, 2019, 43(20): 8-15, 30. | |
[9] | 徐岩, 张建浩, 张荟. 含冷、热、电、气的园区综合能源系统选址定容规划案例分析[J]. 太阳能学报, 2022, 43(1): 313-322. |
XU Yan, ZHANG Jianhao, ZHANG Hui. Case analysis on site-selection capacity-determination planning of park integrated energy system with cold, hot, electricity and gas[J]. Acta Energiae Solaris Sinica, 2022, 43(1): 313-322. | |
[10] | 曹严, 穆云飞, 贾宏杰, 等. 考虑建设时序的园区综合能源系统多阶段规划[J]. 中国电机工程学报, 2020, 40(21): 6815-6828. |
CAO Yan, MU Yunfei, JIA Hongjie, et al. Multi-stage planning of park-level integrated energy system considering construction time sequence[J]. Proceedings of the CSEE, 2020, 40(21): 6815-6828. | |
[11] | 陈志, 胡志坚, 翁菖宏, 等. 基于阶梯碳交易机制的园区综合能源系统多阶段规划[J]. 电力自动化设备, 2021, 41(9):148-155. |
CHEN Zhi, HU Zhijian, WENG Changhong, et al. Multi-stage planning of park-level integrated energy system based on ladder-type carbon trading mechanism[J]. Electric Power Automation Equipment, 2021, 41(9): 148-155. | |
[12] | 张瑜. 从低碳、近零碳到零碳:我国“园区碳中和”发展之路[EB/OL].(2022-03-23)[2023-06-10]. https://news.bjx.com.cn/html/20220323/1212124.shtml. |
ZHANG Yu. From low carbon, near zero carbon to zero carbon:The development road of "carbon neutral paek"[EB/OL].(2022-03-23)[2023-06-10]. https://news.bjx.com.cn/html/20220323/1212124.shtml. | |
[13] | 陈吕军. 做好碳达峰碳中和工作, 工业园区必须做出贡献[J]. 资源再生, 2021(2): 15-20. |
CHEN Lvjun. To achieve peak carbon neutrality, industrial parks must make contributions[J]. Resource Regeneration, 2021(2):15-20. | |
[14] | 李婷, 郝一涵, 王萌, 等. 零碳园区综合解决方案: 从园区入手打造“碳中和”示范[R]. 北京: 落基山研究所, 2022. |
LI Ting, HAO Yihan, WANG Meng, et al. Zero-carbon park comprehensive solution: Start from the park to create a "carbon neutral" demonstration[R]. Beijing: Rocky Mountain Institute, 2022. | |
[15] | 汤亚宸, 刘婷婷, 刘广一, 等. 园区电力碳排放核算系统[J]. 供用电, 2022, 39(10):36-43. |
TANG Yachen, LIU Tingting, LIU Guangyi, et al. Park electric power carbon emission accounting system[J]. Power Supply, 2022, 39(10):36-43. | |
[16] | 袁增伟. 工业园区温室气体核算与减排[M]. 北京: 科学出版社, 2014. |
[17] | 吕力行, 陈少华, 张小白, 等. 考虑规模化电池储能SOC一致性的电力系统二次调频控制策略[J]. 热力发电, 2021, 50(7):108-117. |
LYU Lixing, CHEN Shaohua, ZHANG Xiaobai, et al. Control strategy for secondary frequency regulation of power system considering SOC consensus of large-scale battery energy storage[J]. Thermal Power Generation, 2021, 50(7):108-117. | |
[18] | 周文钊. 基于状态估计的储能电池辅助电网调频控制策略研究[D]. 长沙: 长沙理工大学, 2021. |
ZHOU Wenzhao. Research on energy storage battery auxiliary frequency modulation control strategy based on state estimation[D]. Changsha: Changsha University of Science & Technology, 2021. | |
[19] | 李欣然, 黄际元, 陈远扬, 等. 基于灵敏度分析的储能电池参与二次调频控制策略[J]. 电工技术学报, 2017, 32(12):224-233. |
LI Xinran, HUANG Jiyuan, CHEN Yuanyang, et al. Battery energy storage control strategy in secondary frequency regulation considering its action moment and depth[J]. Transactions of China Electrotechnical Society, 2017, 32(12):224-233. | |
[20] | 周彦吉. 储能电池参与AGC二次调频模糊控制策略研究[D]. 长沙: 湖南大学, 2018. |
ZHOU Yanji. Secondary frequency tegulation strategy with fuzzy logic method of the battery storage in AGC[D]. Changsha: Hunan University, 2018. | |
[21] |
金立, 张力, 任炬光, 等. 针对气象敏感型综合能源负荷的收敛交叉映射因果关系分析[J]. 综合智慧能源, 2023, 45(1):23-30.
doi: 10.3969/j.issn.2097-0706.2023.01.003 |
JIN Li, ZHANG Li, REN Juguang, et al. Causality analysis of climate sensitive loads in integrated energy system based on convergence cross mapping[J]. Integrated Intelligent Energy, 2023, 45(1):23-30.
doi: 10.3969/j.issn.2097-0706.2023.01.003 |
|
[22] |
高明, 郝妍. 基于BiLSTM网络与误差修正的超短期负荷预测[J]. 综合智慧能源, 2023, 45(1):31-40.
doi: 10.3969/j.issn.2097-0706.2023.01.004 |
GAO Ming, HAO Yan. Ultra-short-term load forecasting based on BiLSTM network and error correction[J]. Integrated Intelligent Energy, 2023, 45(1):31-40.
doi: 10.3969/j.issn.2097-0706.2023.01.004 |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[3] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[4] | HE Shuwei, HAN Yinghui, XU Wenbin, ZHANG Yuanxun, SHAN Yulong, YU Yunbo. Simulation for CO2 emissions from private vehicles in Beijing under different energy strategies [J]. Integrated Intelligent Energy, 2023, 45(8): 26-35. |
[5] | TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality [J]. Integrated Intelligent Energy, 2023, 45(8): 53-63. |
[6] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[7] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[8] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[9] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
[10] | ZHAO Guotao, QIAN Guoming, SUN Yanbing, DING Quan, ZHU Haidong. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation [J]. Integrated Intelligent Energy, 2023, 45(6): 73-80. |
[11] | LIU Ziqi, SU Tingting, HE Jiayang, WANG Yu. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(6): 9-16. |
[12] | ZHOU Shuxin, FAN Huailin, HU Xun. Preparation of biomass-based carbon materials and its application as electrodes in supercapacitors [J]. Integrated Intelligent Energy, 2023, 45(5): 1-12. |
[13] | FAN Dekai, FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun. Review on the preparation of high-value chemicals from cellulose pyrolysis [J]. Integrated Intelligent Energy, 2023, 45(5): 24-31. |
[14] | LI Minxia, HOU Beiran, WANG Pai, DONG Liwei, TIAN Hua. Application and development of CO2 transcritical cycle heat pumps [J]. Integrated Intelligent Energy, 2023, 45(4): 12-18. |
[15] | WANG Yunyun, MA Zhicheng, ZHOU Qiang, DONG Haiying. Robust optimal scheduling of multi-energy cooperative game considering fairness [J]. Integrated Intelligent Energy, 2023, 45(2): 10-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||