Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (6): 85-93.doi: 10.3969/j.issn.2097-0706.2025.06.009
• Source-grid Coordination • Previous Articles
BAN Fengchun1(), CHEN Xiaofeng2, HUANG Zhijia1,*(
)
Received:
2025-02-25
Revised:
2025-04-07
Published:
2025-06-25
Contact:
HUANG Zhijia
E-mail:2245007623@qq.com;jzjnyjs@163.com
Supported by:
CLC Number:
BAN Fengchun, CHEN Xiaofeng, HUANG Zhijia. Residential photovoltaic power generation prediction model based on PSO-BP neural network[J]. Integrated Intelligent Energy, 2025, 47(6): 85-93.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.06.009
[1] | 劳凯月, 祁明亮, 高敏刚, 等. 碳中和目标下我国光伏发电发展路径规划研究[J]. 科技促进发展, 2023, 19(4): 219-227. |
LAO Kaiyue, QI Mingliang, GAO Mingang, et al. Study on China's optimal solar photovoltaic power development path to achieve carbon neutrality[J]. Science and Technology for Development, 2023, 19(4): 219-227. | |
[2] | 张春明, 晋家润, 武春旭, 等. 能源转型视角下垭口村“零碳乡村” 可行性研究[J]. 建筑科学, 2025, 41(2): 34-45. |
ZHANG Chunming, JIN Jiarun, WU Chunxu, et al. Feasibility study on the "zero-carbon village" of yakou village from the perspective of energy transition[J]. Building Science, 2025, 41(2): 34-45. | |
[3] | WEN Q M, LIU G, RAO Z H, et al. Applications, evaluations and supportive strategies of distributed energy systems: A review[J]. Energy and Buildings, 2020, 225: 110314. |
[4] | NADEEM TBIN, SIDDIQUI M, KHALID M, et al. Distributed energy systems: A review of classification, technologies, applications, and policies[J]. Energy Strategy Reviews, 2023, 48: 101096. |
[5] | 曾鸣, 许文秀, 魏阳, 等. 基于可再生能源分布式发电投资的模糊综合评价研究[J]. 华东电力, 2011, 39(2): 180-183. |
ZENG Ming, XU Wenxiu, WEI Yang, et al. Research on fuzzy synthetic evaluation of renewable distributed energy generation investment[J]. East China Electric Power, 2011, 39(2): 180-183. | |
[6] | 李莎, 鲍丹阳. 负载自适应扰动孤岛检测法[J]. 电力电子技术, 2025, 59(1): 86-89. |
LI Sha, BAO Danyang. Load-adaptive disturbance islanding detection method[J]. Power Electronics, 2025, 59(1): 86-89. | |
[7] | SOMMERFELD J, BUYS L, VINE D. Residential consumers' experiences in the adoption and use of solar PV[J]. Energy Policy, 2017, 105: 10-16. |
[8] | CHI F A, WU Y. Residential buildings integrated with SPVP and RCL towards energy saving[J]. Renewable and Sustainable Energy Reviews, 2025, 212: 115370. |
[9] | 黄志甲, 寇遵丽, 郝红婷. 民居能源中心能量匹配及其鲁棒性[J]. 太阳能学报, 2021, 42(11): 495-500. |
HUANG Zhijia, KOU Zunli, HAO Hongting. Energy matching and robustness of home energy hub[J]. Acta Energiae Solaris Sinica, 2021, 42(11): 495-500. | |
[10] | NELEGA R, GREU D I, JECAN E, et al. Prediction of power generation of a photovoltaic power plant based on neural networks[J]. IEEE Access, 2023, 11: 20713-20724. |
[11] | TONG J L, XIE L P, FANG S X, et al. Hourly solar irradiance forecasting based on encoder-decoder model using series decomposition and dynamic error compensation[J]. Energy Conversion and Management, 2022, 270: 116049. |
[12] | 张永宁, 任晓颖, 张飞, 等. 基于深度学习的光伏功率预测技术[J/OL]. 综合智慧能源, 1-8 (2024-04-01)[2025-02-12]. https://kns.cnki.net/kcms/detail/41.1461.TK.20240328.2244.002.html. |
ZHANG Yongning, REN Xiaoying, ZHANG Fei, et al. Deep learning based Photovoltaic power prediction technology[J/OL]. Integrated Intelligent Energy, 1-8 (2024-04-01)[2025-02-12]. https://kns.cnki.net/kcms/detail/41.1461.TK.20240328.2244.002.html. | |
[13] | 袁俊球, 王迪, 谢小锋, 等. 基于广义天气分类的ICEEMDAN-LSTM网络光伏发电功率短期预测[J]. 综合智慧能源, 2024, 46(9): 53-60. |
YUAN Junqiu, WANG Di, XIE Xiaofeng, et al. Study of short-term PV power prediction based on ICEEMDAN-LSTM networks under generalized weather classifications[J]. Integrated Intelligent Energy, 2024, 46(9): 53-60. | |
[14] | OGLIARI E, DOLARA A, MANZOLINI G, et al. Physical and hybrid methods comparison for the day ahead PV output power forecast[J]. Renewable Energy, 2017, 113: 11-21. |
[15] | MASSERAN N, RAZALI A M, IBRAHIM K, et al. Fitting a mixture of von mises distributions in order to model data on wind direction in peninsular malaysia[J]. Energy Conversion and Management, 2013, 72: 94-102. |
[16] | IMPRAM S, VARBAK NESE S, ORAL B. Challenges of renewable energy penetration on power system flexibility: A survey[J]. Energy Strategy Reviews, 2020, 31: 100539. |
[17] | MANSOUR AAIT, TILIOUA A, TOUZANI M. Bi-LSTM, GRU and 1D-CNN models for short-term photovoltaic panel efficiency forecasting case amorphous silicon grid-connected PV system[J]. Results in Engineering, 2024, 21: 101886. |
[18] | YANG C, LI S Y, GOU Z H. Spatiotemporal prediction of urban building rooftop photovoltaic potential based on GCN-LSTM[J]. Energy and Buildings, 2025, 334: 115522. |
[19] | 黄牧涛, 邢芳菲, 陈兴邦, 等. 基于K-means聚类和极限学习机组合算法的短期光伏功率预测[J]. 水电能源科学, 2024, 42(2): 217-220, 216. |
HUANG Mutao, XING Fangfei, CHEN Xingbang, et al. Short-term PV power prediction based on K-means clustering and extreme learning machine combination algorithm[J]. Water Resources and Power, 2024, 42(2): 217-220, 216. | |
[20] | NGUYEN-DUC T, DO-DINH H, FUJITA G, et al. Multi 2D-CNN-based model for short-term PV power forecast embedded with Laplacian Attention[J]. Energy Reports, 2024, 12: 2086-2096. |
[21] | DEWI T, MARDIYATI E N, RISMA P, et al. Hybrid machine learning models for pv output prediction: Harnessing random forest and LSTM-RNN for sustainable energy management in aquaponic system[J]. Energy Conversion and Management, 2025, 330: 119663. |
[22] | IHEANETU K J. Solar photovoltaic power forecasting: A review[J]. Sustainability, 2022, 14(24): 17005. |
[23] | KHELIFI R, GUERMOUI M, RABEHI A, et al. Short-term PV power forecasting using a hybrid TVF-EMD-ELM strategy[J]. International Transactions on Electrical Energy Systems, 2023, 2023(1): 6413716. |
[24] | HU K Y, WANG L D, LI W J, et al. Forecasting of solar radiation in photovoltaic power station based on ground-based cloud images and BP neural network[J]. IET Generation, Transmission and Distribution, 2022, 16(2): 333-350. |
[25] | LIU Z F, LIU H B, ZHANG D M. PSO-BP-based optimal allocation model for complementary generation capacity of the photovoltaic power station[J]. Energy Engineering, 2023, 120(7): 1717-1727. |
[26] | LI G H, WEI X, YANG H. Decomposition integration and error correction method for photovoltaic power forecasting[J]. Measurement, 2023, 208: 112462. |
[27] | 程先龙, 张杰, 李思莹, 等. 基于VMD-BP-BiLSTM的短期风电功率预测[J/OL]. 综合智慧能源, 1-10 (2024-12-12)[2025-02-12]. https://kns.cnki.net/kcms/detail/41.1461.TK.20241211.1634.002.html. |
CHENG Xianlong, ZHANG Jie, LI Siying, et al. Short-term wind power prediction based on VMD-BP-BiLSTM[J/OL]. Integrated Intelligent Energy, 1-10 (2024-12-12)[2025-02-12]. https://kns.cnki.net/kcms/detail/41.1461.TK.20241211.1634.002.html. | |
[28] | 颜高洋, 丁贵立, 许志浩, 等. 基于帝王蝶优化算法的BP神经网络能源预测模型研究[J]. 南昌工程学院学报, 2023, 42(3): 88-94. |
YAN Gaoyang, DING Guili, XU Zhihao, et al. Research on BP neural network energy prediction model based on monarch butterfly optimization algorithm[J]. Journal of Nanchang Institute of Technology, 2023, 42(3): 88-94. | |
[29] | 王登海, 安玥馨, 廖晨博, 等. 基于CNN-LSTM混合神经网络的光伏发电量预测方法研究[J]. 西安石油大学学报(自然科学版), 2024, 39(1): 129-134. |
WANG Denghai, AN Yuexin, LIAO Chenbo, et al. Research on photovoltaic power generation prediction method based on CNN-LSTM hybrid neural network[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2024, 39(1): 129-134. | |
[30] | 袁冰清, 程功, 郑柳刚. BP神经网络基本原理[J]. 数字通信世界, 2018(8): 49-51. |
YUAN Bingqing, CHENG Gong, ZHENG Liugang. Basic principle of BP neural networks[J]. Digital Communication World, 2018(8): 49-51. | |
[31] | 胡祖源, 靳现林, 谭雅之, 等. 基于改进粒子群算法的分布式光伏及储能系统优化配置[J]. 综合智慧能源, 2023, 45(1): 49-57. |
HU Zuyuan, JIN Xianlin, TAN Yazhi, et al. Optimized configuration of distributed photovoltaic and energy storage system based on improved particle swarm algorithm[J]. Integrated Intelligent Energy, 2023, 45(1): 49-57. | |
[32] | 中国气象局. 气候季节划分: QX/T 152—2012[S]. 北京: 气象出版社, 2012. |
[33] | GB/T 9535-2005/IEC 61215:2005 地面用晶体硅光伏组件—设计鉴定和定型[S]. 北京: 中国标准出版社, 2005. |
[34] | 陈美珍, 柳扬, 徐胜彬, 等. 基于天气类型及改进的小波神经网络的光伏发电短期预测[J]. 贵州大学学报(自然科学版), 2022, 39(1): 70-77, 88. |
CHEN Meizhen, LIU Yang, XU Shengbin, et al. Short term forecasting of photovoltaic power generation based on weather type and improved wavelet neural network[J]. Journal of Guizhou University (Natural Sciences), 2022, 39(1): 70-77, 88. |
[1] | CHENG Xianlong, ZHANG Jie, LI Siying, YANG Yixia, YANG Cuifei. Short-term wind power prediction based on VMD-BP-BiLSTM [J]. Integrated Intelligent Energy, 2025, 47(6): 20-29. |
[2] | BAI Liuxing, WU Feiyu, YE Luyang, CAI Changlin, LEI Xia. A joint clearing model of electricity spot market considering wind power uncertainty [J]. Integrated Intelligent Energy, 2025, 47(5): 73-83. |
[3] | ZHANG Yuanxi, YANG Guohua, YANG Na, LI Zhen, MA Xin, LIU Haorui, NAN Shaoshuai. Photovoltaic power prediction based on K-means clustering and the LSTM-SVR-DE model [J]. Integrated Intelligent Energy, 2025, 47(2): 71-78. |
[4] | YUAN Junqiu, WANG Di, XIE Xiaofeng, ZHANG Qianying, CAO Shang, CAO Fei, ZHANG Jingwei. Study of short-term PV power prediction based on ICEEMDAN-LSTM networks under generalized weather classifications [J]. Integrated Intelligent Energy, 2024, 46(9): 53-60. |
[5] | YIN Linfei, MENG Yujie. Short-term wind power forecasting based on DenseNet convolutional neural networks [J]. Integrated Intelligent Energy, 2024, 46(7): 12-20. |
[6] | SHENG Ruixiang, ZHANG Xiaoyu. Photovoltaic power forecasting model based on probabilistic TCN-Transformer [J]. Integrated Intelligent Energy, 2024, 46(11): 10-18. |
[7] | WANG Haiming, ZHANG Runzhi, ZHOU Jiahui, XU Gang, GENG Jiaxi. Optimal capacity configuration of off-grid wind-solar hybrid hydrogen production and green ammonia synthesis system [J]. Integrated Intelligent Energy, 2024, 46(11): 73-82. |
[8] | QIAO Lihui, LI Mingche, ZHANG Rui, FANG Zongjie. Capacity configuration method for a battery-SMES hybrid energy storage system in a DC microgrid [J]. Integrated Intelligent Energy, 2023, 45(9): 59-64. |
[9] | SUN Guanyu, WANG Yongzhen, YAN Yican, WANG Yufei, ZHANG Ping, ZHANG Lanlan. Application analysis on a geothermal + multi-energy complementary energy system for an oilfield area [J]. Integrated Intelligent Energy, 2023, 45(12): 63-70. |
[10] | ZHENG Zhen, ZHU Feng, MA Xiaoli, TIAN Shuxin, JIANG Haozhe. Short-term new energy power prediction based on TL-LSTM [J]. Integrated Intelligent Energy, 2023, 45(1): 41-48. |
[11] | WANG Xin, CHEN Zucui, BIAN Zaiping, WANG Yeyao, WU Yumiao. Optimal allocation of a wind‒PV‒battery hybrid system in smart microgrid based on particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2022, 44(6): 52-58. |
[12] | LIAO Minle, HUANG Chongyang, DAI Chengcheng, LI Hualin, FAN Gaosong. Analysis method of electric energy substitution potential based on time series and BP neural network [J]. Integrated Intelligent Energy, 2022, 44(3): 38-43. |
[13] | YAN Xinchun, CAO Huan, HUA Yunpeng. Prediction on tube wall temperatures of boiler heating surfaces based on artificial intelligence [J]. Integrated Intelligent Energy, 2022, 44(3): 58-62. |
[14] | LI Xujiong, SUN Linhua, YANG Guoming. MPPT for PV systems appended with centripetal attribute based on improved PSO algorithm [J]. Integrated Intelligent Energy, 2022, 44(3): 70-76. |
[15] | GU Jing, ZHANG Haizhen, RUAN Huifeng, LUO Chengxin, LIU Xinxi, WANG Mingxiao. Exploration on the transformation of energy supply enterprises to integrated energy service providers in industrial parks [J]. Integrated Intelligent Energy, 2022, 44(12): 62-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||