Huadian Technology ›› 2021, Vol. 43 ›› Issue (6): 86-91.doi: 10.3969/j.issn.1674-1951.2021.06.011
• Carbon Sequestration and Utilization • Previous Articles
ZHANG Shufan1(), CHENG Xingxing1(
), WANG Luyuan2(
), ZHANG Xingyu2(
), WANG Zhiqiang1,*(
)
Received:
2021-04-26
Revised:
2021-05-18
Published:
2021-06-25
Contact:
WANG Zhiqiang
E-mail:2991529998@qq.com;xcheng@sdu.edu.cn;luyuanwang@qlu.edu.cn;xyzh@qlu.edu.cn;jackywzq@sdu.edu.cn
CLC Number:
ZHANG Shufan, CHENG Xingxing, WANG Luyuan, ZHANG Xingyu, WANG Zhiqiang. Research on carbon sequestration path of steel slag carbonation under carbon neutralization background[J]. Huadian Technology, 2021, 43(6): 86-91.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.06.011
Tab.2
Comparison of three steel slag carbon fixation processes
固碳方式 | 反应工艺 | 反应时间/h | CO2体积分数/% | 温度/ ℃ | 碳酸化转化率/% |
---|---|---|---|---|---|
冷态钢渣 直接固碳 | 高压反应釜[ | 12 | 99.0 | 40~60 | 68.0 |
PRB[ | 1 | 99.0 | 25 | 93.5 | |
冷态钢渣 间接固碳 | 乙酸、搅拌[ | 1 | 99.0 | 80 | 20.0 |
盐酸、搅拌[ | 1 | 99.0 | 25 | 56.8 | |
乙酸、搅拌、 掺杂TBP[ | 1 | 99.0 | 80 | 40.0 | |
NH4Cl溶液、 搅拌[ | 2 | 99.0 | 80 | 60.0 | |
热态钢渣 直接固碳 | 固定床反应[ | 1 | 99.0 | 600 | 20.4 |
固定床反应[ | 1 | 15.0 | 600 | 18.8 |
[1] | 步学朋. 二氧化碳捕集技术及应用分析[J]. 洁净煤技术, 2014,20(5):9-13,19. |
BU Xuepeng. CO2 capture technologies and application[J]. Clean Coal Technology, 2014,20(5):9-13,19. | |
[2] | 中电联行业发展与环境资源部. 中国煤电清洁发展报告[J]. 中国电力企业管理, 2017(10):49-51. |
[3] | 高本恒, 郝以党, 张淑苓, 等. 钢渣综合利用现状及发展趋势[J]. 环境工程, 2016,34(S1):776-779. |
GAO Benheng, HAO Yidang, ZHANG Shuling, et al. Development trend and comprehensive utilization of steel slag[J]. Environmental Engineering, 2016,34(S1):776-779. | |
[4] | 魏欣蕾, 倪文, 王雪, 等. 钢渣碳化技术研究进展[J]. 矿产保护与利用, 2019,39(3):99-104. |
WEI Xinlei, NI Wen, WANG Xue, et al. Current research of the carbonization technology of steel slag[J]. Conservation and Utilization of Mineral Resources, 2019,39(3):99-104. | |
[5] | 房延凤, 王丹, 王晴, 等. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020,34(2):3126-3132. |
FANG Yanfeng, WANG Dan, WANG Qing, et al. A Review on carbonation of steel slag and its application in building materials[J]. Materials Reports, 2020,34(2):3126-3132. | |
[6] | 陈淑梅, 庞才良, 宋杰光, 等. 利用加速碳化技术激发钢渣活性研究[J]. 萍乡学院学报, 2020,37(6):108-112. |
CHEN Shumei, PANG Cailiang, SONG Jieguang, et al. Study on stimulation of steel slag activity with accelerated carbonization technology[J]. Journal of Pingxiang University, 2020,37(6):108-112. | |
[7] | 孙鹏飞, 房延凤, 刘存顺, 等. 碳酸化预处理钢渣体积安定性和水化活性的影响[J]. 混凝土, 2020(9):69-72. |
SUN Pengfei, FANG Yanfeng, LIU Cunshun, et al. Effects of carbonation on volume stability and hydration activity of steel slag[J]. Concrete, 2020(9):69-72. | |
[8] | 刘丽丽, 王娇月, 邴龙飞, 等. 我国钢渣碳汇的量化分析[J]. 应用生态学报, 2018,29(10):229-234. |
LIU Lili, WANG Jiaoyue, BING Longfei, et al. Analysis of carbon sink of steel slag in China[J]. Chinese Journal of Applied Ecology, 2018,29(10):229-234. | |
[9] | 张作顺, 徐利华, 余广炜, 等. 国内钢渣处理方法及资源化利用的研究进展[C] //2010年全国能源环保生产技术会议论文集.中国金属学会, 2010: 139-143. |
[10] |
PAN SY, CHIANG PC, CHEN YH, et al. Performance evaluation of aqueous carbonation for steelmaking slag:process chemistry[J]. Energy Procedia, 2013,37:115-121.
doi: 10.1016/j.egypro.2013.05.091 |
[11] | 张妍, 常钧, 何萍. 钢渣中游离氧化钙和氧化镁碳酸化反应[J]. 大连理工大学学报, 2018,58(6):634-640. |
ZHANG Yan, CHANG Jun, HE Ping. Carbonation reaction of free CaO and MgO in steel slag[J]. Journal of Dalian University of Technology, 2018,58(6):634-640. | |
[12] |
PAN SY, CHANG EE, CHIANG PC. CO2 Capture by accelerated carbonation of alkaline wastes:A review on its principles and applications[J]. Aerosol and Air Quality Research, 2012,12(5):770-791.
doi: 10.4209/aaqr.2012.06.0149 |
[13] | 张建国, 徐永华. 几种钢渣处理工艺方法的对比分析[J]. 资源再生, 2014(4):58-60. |
ZHANG Jianguo, XU Yonghua. Comparative analysis of several kinds of steel slag treatment methods[J]. Resource Recycling, 2014(4):58-60. | |
[14] |
BONENFANT D, KHAROUNE L, SAUVE S, et al. CO2 sequestration potential of steel slags at ambient pressure and temperature[J]. Industrial & Engineering Chemistry Research, 2008,47(20):7610-7616.
doi: 10.1021/ie701721j |
[15] | 侯淑平. 钢渣的处理工艺及综合利用研究[J]. 冶金管理, 2019(13):8. |
[16] |
STOLAROFF JK, LOWRY GV, KEITH DW. Using CaO‑ and MgO‑rich industrial waste streams for carbon sequestration[J]. Energy Conversion and Management, 2005,46(5):687-699.
doi: 10.1016/j.enconman.2004.05.009 |
[17] | CHANG EE, PAN SY, CHEN YH, et al. CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor[J]. Journal of Hazardous Materials, 2011(195):107-114. |
[18] | CHANG EE, PAN SY, CHEN YH, et al. Accelerated carbonation of steelmaking slags in a high‑gravity rotating packed bed[J]. Journal of Hazardous Materials, 2012,(227-228):97-106. |
[19] |
PAN SY, CHIANG PC, CHEN YH, et al. Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model:Maximization of carbonation conversion[J]. Applied Energy, 2014,113(3):267-276.
doi: 10.1016/j.apenergy.2013.07.035 |
[20] | SANTOS RM, BOUWEL JV, VANDEVELDE E, et al. Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization:Effect of process parameters on geochemical properties[J]. International Journal of Greenhouse Gas Control, 2013(17):32-45. |
[21] | 王日伟, 周宏仓, 何都良, 等. 低浓度碱强化钢渣固定CO2[J]. 科学技术与工程, 2017,17(27):333-337. |
WANG Riwei, ZHOU Hongcang, HE Duliang, et al. Dilute alkali enhance steelmaking slag direct CO2 sequestration[J]. Science Technology and Engineering, 2017,17(27):333-337. | |
[22] | 白书齐, 伊元荣, 杜昀聪, 等. 精炼渣碳酸化矿相析出热力学分析[J]. 环境科学与技术, 2020,43(3):45-50. |
BAI Shuqi, YIN Yuanrong, DU Yuncong, et al. Thermodynamic analysis of phase precipitation of carbonated ore from refining slag[J]. Environmental Science & Technology, 2020,43(3):45-50. | |
[23] | 王晨晔, 包炜军, 许德华, 等. 低浓度碱介质中钢渣碳酸化反应特征[J]. 钢铁, 2016,51(6):87-93. |
WANG Chenye, BAO Weijun, XU Dehua, et al. Reaction characteristics of steelmaking slag carbonation in dilute alkali medium[J]. Iron & Steel, 2016,51(6):87-93. | |
[24] |
ATSUSHI L, MINORU F, AKIHIRO Y, et al. Development of a new CO2 sequestration process utilizing the carbonation of waste cement[J]. Industrial & Engineering Chemistry Research, 2004,43(24):7880-7887.
doi: 10.1021/ie0496176 |
[25] |
TEIR S, ELONEVA S, FOGELHOLM C J, et al. Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production[J]. Energy, 2007,32(4):528-539.
doi: 10.1016/j.energy.2006.06.023 |
[26] | 唐海燕, 孟文佳, 孙绍恒, 等. 炼钢炉渣的浸出和碳酸化[J]. 北京科技大学学报, 2014,36(S1):27-31. |
TANG Haiyan, MENG Wenjia, SUN Shaoheng, et al. Leaching and carbonation of steelmaking slag[J]. Chinese Journal of Engineering, 2014,36(S1):27-31. | |
[27] | 田思聪. 钢渣制备高效钙基CO2吸附材料用于钢铁行业碳捕集研究[D]. 北京:清华大学, 2016. |
[28] | BAO Weijun, LI Huiquan, ZHANG Yi. Experimental investigation of enhanced carbonation by solvent extraction for indirect CO2 mineral sequestration[J]. Greenhouse Gases:Science & Technology, 2015,4(6):785-799. |
[29] | 陈林. 转炉钢渣钙基活性组元选择性浸出研究[D]. 昆明:昆明理工大学, 2018. |
[30] |
SATOSHI K, TAIKI N, NAOKI Y, et al. Development of a new pH‑swing CO2 mineralization process with a recyclable reaction solution[J]. Energy, 2008,33(5):776-784.
doi: 10.1016/j.energy.2008.01.005 |
[31] | 杜龙, 马国军, 张翔, 等. 微波场中铵盐浸出钢渣体系的升温行为[J]. 太原理工大学学报, 2014,45(2):157-162. |
DU Long, MA Guojun, ZHANG Xiang, et al. Temperature‑rising behavior of steel slag leaching system by ammonium salts in a microwave field[J]. Journal of Taiyuan University of Technology, 2014,45(2):157-162. | |
[32] | SAID A, MATTILA O, ELONEVA S, et al. Enhancement of calcium dissolution from steel slag by ultrasound[J]. Chemical Engineering and Processing:Process Intensification, 2015(89):1-8. |
[33] | 狄华娟, 杨林军, 潘丹萍. 超声波强化钙基废渣碳酸化固定CO2的性能[J]. 化工学报, 2012,63(8):2557-2565. |
DI Huajuan, YANG Linjun, PAN Danping. Enhancement of carbon dioxide sequestration with calcium‑based residues by ultrasonics[J]. CIESC Journal, 2012,63(8):2557-2565. | |
[34] | 董晓丹. 转炉钢渣快速吸收二氧化碳试验初探[J]. 炼钢, 2008,24(5):29-32. |
DONG Xiaodan. Preliminary experiments on fast absorption of CO2 by steel slag of converter[J]. Steelmaking, 2008,24(5):29-32. | |
[35] |
TIAN S, JIANG J, CHEN X, et al. Direct gas‑solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO2 in steel‑making plants[J]. Chemsuschem, 2013,6(12):2348-2355.
doi: 10.1002/cssc.201300436 |
[36] | 孔祥辉, 陈韧, 李玲玲, 等. 转炉渣吸附CO2反应研究[J]. 炼钢, 2019,35(2):66-69,74. |
KONG Xianghui, CHEN Ren, LI Lingling, et al. Study on CO2 adsorption reaction of converter slag[J]. Steelmaking, 2019,35(2):66-69,74. | |
[37] | 白智韬, 岳昌盛, 邱桂博, 等. CO2气体对钢渣组成和性能的影响[J]. 环境工程, 2018,36(12):171-176. |
BAI Zhitao, YUE Changsheng, QIU Guibo, et al. Influence of CO2 on composition and properties of steel slag[J]. Environmental Engineering, 2018,36(12):171-176. | |
[38] | 唐卫军, 廖洪强, 周宇, 等. 转炉渣中游离氧化钙的分布及稳定化研究[J]. 炼钢, 2009,25(3):34-36,41. |
TANG Weijun, LIAO Hongqiang, ZHOU Yu, et al. Distribution of free‑calcium oxide in converter slags and its stabilization[J]. Steelmaking, 2009,25(3):34-36,41. | |
[39] | 彭犇, 岳昌盛, 李玉祥, 等. 不同条件对钢渣碳酸化反应的影响及动力学分析[J]. 硅酸盐通报, 2020,39(11):3562-3566. |
PENG Ben, YUE Changsheng, LI Yuxiang, et al. Effects of different conditions on carbonation reaction of steel slag and kinetic analysis[J]. Bulletin of the Chinese Ceramic Society, 2020,39(11):3562-3566. | |
[40] | 涂茂霞, 雷泽, 吕晓芳, 等. 水淬钢渣碳酸化固定CO2[J]. 环境工程学报, 2015,9(9):4514-4518. |
TU Maoxia, LEI Ze, LYU Xiaofang, et al. Carbon dioxide sequestration using water quenched steel slag[J]. Chinese Journal of Environmental Engineering, 2015,9(9):4514-4518. | |
[41] | 马安杰. 流化床钢渣碳酸化固定二氧化碳研究[D]. 南京:南京信息工程大学, 2018. |
[42] | 包炜军, 李会泉, 张懿. 强化碳酸化固定CO2反应过程分析与机理探讨[J]. 化工学报, 2009,60(9):2332-2338. |
BAO Weijun, LI Huiquan, ZHANG Yi. Process analysis and mechanism discussion of enhanced CO2 sequestration by mineral carbonation[J]. CIESC Journal, 2009,60(9):2332-2338. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | LI Pengzhen, JIA Bingke, LIU Yanhong, WU Zhenlong. Modified active disturbance rejection control on the post-combustion CO2 capture system [J]. Integrated Intelligent Energy, 2023, 45(8): 18-25. |
[3] | HE Shuwei, HAN Yinghui, XU Wenbin, ZHANG Yuanxun, SHAN Yulong, YU Yunbo. Simulation for CO2 emissions from private vehicles in Beijing under different energy strategies [J]. Integrated Intelligent Energy, 2023, 45(8): 26-35. |
[4] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[5] | ZHAO Guotao, QIAN Guoming, SUN Yanbing, DING Quan, ZHU Haidong. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation [J]. Integrated Intelligent Energy, 2023, 45(6): 73-80. |
[6] | FAN Dekai, FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun. Review on the preparation of high-value chemicals from cellulose pyrolysis [J]. Integrated Intelligent Energy, 2023, 45(5): 24-31. |
[7] | GE Leijiao, CUI Qingxue, LI Mingwei, LIU Zifa, XIA Mingchao. Review on situational awareness technology in a low-carbon oriented new power system [J]. Integrated Intelligent Energy, 2023, 45(1): 1-13. |
[8] | WENG Zhipeng, ZHOU Jinghua, LI Jin, ZHAN Zhengdong. Impact of wind and solar power grid connection on microgrid reliability [J]. Integrated Intelligent Energy, 2023, 45(1): 67-74. |
[9] | JIANG Ting, ZHAO Yajiao. Carbon emission reduction analysis for gas-based distributed integrated energy systems [J]. Integrated Intelligent Energy, 2022, 44(9): 27-32. |
[10] | JIANG Shu, LIU Fangfang, LIU Yuanyuan, CHEN Qizhao, LIAN Li, REN Mengnan. Comprehensive cascade application of "geothermal energy +" in engineering practice [J]. Integrated Intelligent Energy, 2022, 44(9): 59-64. |
[11] | HU Changzheng, WANG Yabo, LIU Shengchun. Application of MEA solution in the CO2 capture in biomass power plants and coal-fired power plants [J]. Integrated Intelligent Energy, 2022, 44(6): 78-85. |
[12] | XIE Dian, GAO Yajing, LIU Tianyang, ZHAO Liang. Study on the impact of re-electrification on the path to carbon peaking and carbon neutralization in China [J]. Integrated Intelligent Energy, 2022, 44(3): 1-8. |
[13] | HE Qingsu, HAN Qingzhi, LIU Zhiyuan, ZHANG Zhaoshi. Applications of blockchain technology in carbon trading [J]. Integrated Intelligent Energy, 2022, 44(3): 23-28. |
[14] | ZUO Wendong, LI Biao, GUO Baogang, GAO Xiaoyu, GU Jihao, WANG Weihe, DONG Zhipeng. Application of the secondary network intelligent balance system based on big data analysis [J]. Integrated Intelligent Energy, 2022, 44(3): 44-49. |
[15] | WANG Yizheng, HU Jiahua, TANG Qiwen, ZHAO Yiyan, SHEN Qi. Hydropower generation optimization and photovoltaic generation consumption in the spot market for electricity [J]. Integrated Intelligent Energy, 2022, 44(2): 73-79. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||