Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (5): 63-69.doi: 10.3969/j.issn.2097-0706.2023.05.007
• Thermal Conversion of Biomass • Previous Articles Next Articles
CHEN Wenxuan1(), LI Xueqin1,2, LIU Peng1,*(
), LI Yanling1, LU Yan1, LEI Tingzhou1
Received:
2022-11-26
Revised:
2023-01-11
Published:
2023-05-25
Supported by:
CLC Number:
CHEN Wenxuan, LI Xueqin, LIU Peng, LI Yanling, LU Yan, LEI Tingzhou. Study on pyrolysis law of catalytic biomass tar model compounds[J]. Integrated Intelligent Energy, 2023, 45(5): 63-69.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.05.007
[1] |
BALL M, WIETSCHEL M. The future of hydrogen—Opportunities and challenges[J]. International Journal of Hydrogen Energy, 2009, 34(2): 615-627.
doi: 10.1016/j.ijhydene.2008.11.014 |
[2] |
CAO J P, REN J, ZHAO X Y, et al. Effect of atmosphere on carbon deposition of Ni/Al2O3 and Ni-loaded on lignite char during reforming of toluene as a biomass tar model compound[J]. Fuel, 2018, 217:515-521.
doi: 10.1016/j.fuel.2017.12.121 |
[3] |
YANG Q, ZHOU H, BARTOCCI P, et al. Prospective contributions of biomass pyrolysis to China's 2050 carbon reduction and renewable energy goals[J]. Nature Communications, 2021, 12(1): 1698-1679.
doi: 10.1038/s41467-021-21868-z pmid: 33727563 |
[4] | 张东旺, 范浩东, 赵冰, 等. 国内外生物质能源发电技术应用进展[J]. 华电技术, 2021, 43(3): 70-75. |
ZHANG Dongwang, FAN Haodong, ZHAO Bing, et al. Development of biomass power generation technology at home and abroad[J]. Huadian Technology, 2021, 43(3): 70-75. | |
[5] | 王芳, 刘晓风, 陈伦刚, 等. 生物质资源能源化与高值利用研究现状及发展前景[J]. 农业工程学报, 2021, 37(18):219-231. |
WANG Fang, LIU X Fxiaofeng, CHEN Lungang, et al. Research status and development prospect of energy and high value utilization of biomass resources[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 219-231. | |
[6] | MILNE T A, ABATZAGLOU N, EVANS R J. Biomass gasifier "tars": Their nature, formation, and conversion[R]. NREL Report, 1998. |
[7] | DAYTON D. Review of the literature on catalytic biomass tar destruction[R]. Milestone Completion Report, 2002. |
[8] |
PARK S W, LEE J S, YANG W S, et al. Gasification characteristics of biomass for tar removal by secondary oxidant injection[J]. Journal of Material Cycles and Waste Management, 2018, 20(2): 823-831.
doi: 10.1007/s10163-017-0642-0 |
[9] |
ZAINAL S. Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(5): 2355-2377.
doi: 10.1016/j.rser.2011.02.018 |
[10] | XU D, XIONG Y, ZHANG S, et al. The influence of preparation method of char supported metallic Ni catalysts on the catalytic performance for reforming of biomass tar[J]. International Journal of Energy Research, 2019, 43(13): 6922-6933. |
[11] |
HU M, LAGHARI M, CUI B, et al. Catalytic cracking of biomass tar over char supported nickel catalyst[J]. Energy, 2018, 145: 228-237.
doi: 10.1016/j.energy.2017.12.096 |
[12] |
KOIKE M, ISHIKAWA C, LI D, et al. Catalytic performance of manganese-promoted nickel catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas[J]. Fuel, 2013, 103: 122-129.
doi: 10.1016/j.fuel.2011.04.009 |
[13] |
BUCHIREDDY P R, BRICKA R M, RODRIGUEZ J, et al. Biomass gasification: Catalytic removal of tars over zeolites and nickel supported zeolites[J]. Energy & Fuels, 2010, 24(3-4): 2707-2715.
doi: 10.1021/ef901529d |
[14] |
ILIOPOULOU E F, STEFANIDIS S D, KALOGIANNIS K G, et al. Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite[J]. Applied Catalysis B Environmental, 2012, 127: 281-290.
doi: 10.1016/j.apcatb.2012.08.030 |
[15] |
WILLIAMS P T, NUGRANAD N. Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks[J]. Energy, 2000, 25(6): 493-513.
doi: 10.1016/S0360-5442(00)00009-8 |
[16] | YILDIZ G, PRONK M, DJOKIC M, et al. Validation of a new set-up for continuous catalytic fast pyrolysis of biomass coupled with vapour phase upgrading[J]. Journal of Analytical & Applied Pyrolysis, 2013, 103: 343-351. |
[17] | 陈文轩, 刘鹏, 李学琴, 等. 生物质焦油催化裂解催化剂的研究进展[J]. 林产工业, 2022, 59(3):41-48. |
CHEN Wenxuan, LIU Peng, LI Xueqin, et al. Research progress of catalytic cracking catalysts for biomass tar[J]. China Forest Products Industry, 2022, 59(3):41-48. | |
[18] |
张一民, 康建立, 赵乃勤. 过渡金属基电解水催化剂的发展现状及展望[J]. 综合智慧能源, 2022, 44(5): 15-29.
doi: 10.3969/j.issn.2097-0706.2022.05.002 |
ZHANG Yimin, KANG Jianli, ZHAO Naiqin. Development and perspectives of the transition metal-based catalysts for water splitting[J]. Integrated Intelligent Energy, 2022, 44(5): 15-29.
doi: 10.3969/j.issn.2097-0706.2022.05.002 |
|
[19] |
LI X, LIU P, LEI T, et al. Pyrolysis of biomass tar model compound with various Ni-based catalysts: Influence of promoters characteristics on hydrogen-rich gas formation[J]. Energy, 2022, 244:123137.
doi: 10.1016/j.energy.2022.123137 |
[20] |
TAN R S, ABDULLAH T A T, MAHMUD S A, et al. Catalytic steam reforming of complex gasified biomass tar model toward hydrogen over dolomite promoted nickel catalysts[J]. International Journal of Hydrogen Energy, 2019, 44(39):21303-21314.
doi: 10.1016/j.ijhydene.2019.06.125 |
[21] |
BASU S, PRADHAN N C. Selective production of hydrogen by acetone steam reforming over Ni-Co/olivine catalysts[J]. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127: 357-373.
doi: 10.1007/s11144-019-01542-8 |
[22] | LI X, LIU P, CHEN W, et al. Catalytic pyrolysis of toluene as biomass tar model component using Ni/HZSM-5 modified by CeO2 and MgO promoters[J]. Journal of Analytical and Applied Pyrolysis, 2022, 162,105436. |
[23] |
CHEN W, LI X, LI Y, et al. Synergistic modification of Ca/Co on Ni/HZSM-5 catalyst for pyrolysis of organic components in biomass tar[J]. Journal of Analytical and Applied Pyrolysis, 2022, 166: 105619.
doi: 10.1016/j.jaap.2022.105619 |
[24] |
HOSSAIN M M, LASA H. Reduction and oxidation kinetics of Co-Ni/Al2O3 oxygen carrier involved in a chemical-looping combustion cycles[J]. Chemical Engineering Science, 2010, 65(1): 98-106.
doi: 10.1016/j.ces.2009.01.059 |
[25] | ASHOK J, KATHIRASER Y, ANG M L, et al. Bi-functional hydrotalcite-derived NiO-CaO-Al2O3 catalysts for steam reforming of biomass and/or tar model compound at low steam-to-carbon conditions[J]. Applied Catalysis B Environmental, 2015, 172:116-128. |
[26] |
WANG L, LI D, KOIKE M, et al. Catalytic performance and characterization of Ni-Co catalysts for the steam reforming of biomass tar to synthesis gas[J]. Fuel, 2013, 112(10):654-661.
doi: 10.1016/j.fuel.2012.01.073 |
[27] |
THYSSEN V V, ASSAF E M. Ni/CaO-SiO2 catalysts for assessment in steam reforming reaction of acetol[J]. Fuel, 2019, 254:115592.
doi: 10.1016/j.fuel.2019.05.175 |
[28] |
XU Z F, LIN M C. Ab initio kinetics for the unimolecular reaction C6H5OH→CO+C5H6[J]. The Journal of Physical Chemistry A, 2006, 110(4): 1672-1677.
doi: 10.1021/jp055241d |
[29] | SCHEER A M, MUKARAKATE C, ROBICHAUD D J, et al. Unimolecular thermal decomposition of phenol and d5-phenol: Direct observation of cyclopentadiene formation via cyclohexadienone[J]. Journal of Physical Chemistry A, 2012, 136(4): 44309. |
[30] |
WANG G, WANG H, TANG Z, et al. Simultaneous production of hydrogen and multi-walled carbon nanotubes by ethanol decomposition over Ni/Al2O3 catalysts[J]. Applied Catalysis B Environmental, 2009, 88: 142-151.
doi: 10.1016/j.apcatb.2008.09.008 |
[1] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[2] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[3] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[4] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[5] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[6] | SU Panpan, WANG Xuetao, XING Lili, LI Haojie, LIU Mengjie. Research progress on preparation of liquid fuels by catalytic pyrolysis of pretreated biomass [J]. Integrated Intelligent Energy, 2024, 46(3): 1-11. |
[7] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[8] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[9] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[10] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[11] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[12] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[13] | LI Qinggen, SUN Na, DONG Haiying. Optimal configuration for shared energy storage based on improved whale optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(9): 65-76. |
[14] | YANG Bo, LI Chengyun, LYU Haoxuan, ZHOU Bowen, LI Guangdi, GU Peng. Power system transient stability assessment method based on multiple STA-GLN ensemble models [J]. Integrated Intelligent Energy, 2023, 45(7): 48-60. |
[15] | LIU Yixian, WANG Yubin, YANG Qiang. High fault-tolerant distribution network state estimation method based on gated graph neural network [J]. Integrated Intelligent Energy, 2023, 45(6): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||