Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (8): 59-66.doi: 10.3969/j.issn.2097-0706.2024.08.008
• Energy Conservation and Environmental Protection • Previous Articles Next Articles
SONG Jianjun1(), FU Kun2(
), CHEN Meiqian2,*(
)
Received:
2023-12-11
Revised:
2024-02-23
Published:
2024-08-25
Contact:
CHEN Meiqian
E-mail:16040595@ceic.con;19116004@bjtu.edu.cn;mqchen@bjtu.edu.cn
Supported by:
CLC Number:
SONG Jianjun, FU Kun, CHEN Meiqian. Simulation on the gas-solid flows and combustion in a multi-pass circulating fluidized bed based on computational particle fluid dynamics method[J]. Integrated Intelligent Energy, 2024, 46(8): 59-66.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.08.008
[1] | 呼利军, 刘诚诚. 论循环流化床锅炉节能降耗[J]. 化工管理, 2021, 24:5-6. |
HU Lijun, LIU Chengcheng. Discussion on energy saving and consumption reduction of circulating fluidized bed boiler[J]. Chemical Engineering Management, 2021,24: 5-6. | |
[2] | TU Q Y, WANG H G, OCONE R. Application of three-dimensional full-loop CFD simulation in circulating fluidized bed combustion reactors——A review[J]. Powder Technology, 2022, 399: 117181. |
[3] | JACOB R M, Tokheim L-A. CPFD simulation of an electrically heated fluidized bed calciner with binary particles[J]. Energy Conversion and Management, 2023, 20: 100444. |
[4] | CHEN X, MA J C, TIAN X, et al. CPFD simulation and optimization of a 50 kWth dual circulating fluidized bed reactor for chemical looping combustion of coal[J]. International Journal of Greenhouse Gas Control, 2019, 90:102800. |
[5] | ABBASI A, EGE P E, LASA H. CPFD simulation of a fast fluidized bed steam coal gasifier feeding section[J]. Chemical Engineering Journal, 2011, 174(1): 341-350. |
[6] | 许超. 基于CPFD方法的140 t/h循环流化床锅炉低氮燃烧研究[D]. 武汉: 华中科技大学, 2019. |
XU Chao. Study on low nitrogen combustion of 140 t/h circulating fluidized bed boiler based on CPFD method[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
[7] | 史丹君, 张建. 循环流化床锅炉低氮燃烧的CPFD数值模拟[J]. 锅炉技术, 2020, 51(1): 30-36. |
SHI Danjun, ZHANG Jian. CPFD simulation of low nitrogen combustion in circulating fluidized bed boilers[J]. Boiler Technology, 2020, 51(1): 30-36. | |
[8] | 张瑞卿, 杨海瑞, 吕俊复. 应用于循环流化床锅炉气固流动和燃烧的CPFD数值模拟[J]. 中国电机工程学报, 2013, 33(23):75-83. |
ZHANG Ruiqing, YANG Hairui, LÜ Junfu. Application of CPFD approach on gas-solid flow and combustion in industrial CFB boilers[J]. Proceedings of the CSEE, 2013, 33(23):75-83. | |
[9] | 丛堃林, 李清海, 鲁伟, 等. 多流程循环流化床锅炉热力计算方法研究[J]. 中国电力, 2018, 51(8): 139-147. |
CONG Kunlin, LI Qinghai, LU Wei, et al. Study of the thermal calculation for the multi-path horizontal circulating fluidized bed boiler[J]. Electric Power, 2018, 51(8): 139-147. | |
[10] | 丛堃林, 李清海, 韩峰, 等. 多流程卧式循环流化床气固流动的传热特性[J]. 燃烧科学与技术, 2018, 24(4): 315-322. |
CONG Kunlin, LI Qinghai, HAN Feng, et al. Gas-solid convective heat transfer in the multi-pass horizontal circulating fluidized bed furnaces[J]. Journal of Combustion Science and Technology, 2018, 24(4): 315-322. | |
[11] | 李清海, 周晓彬, 陈庚, 等. 卧式循环流化床锅炉燃烧的数值模拟[J]. 清华大学学报(自然科学版), 2013, 53(3): 6353-6357. |
LI Qinghai, ZHOU Xiaobin, CHEN Geng, et al. Numerical investigation of the flow and combustion in a horizontal circulating fluidized bed boiler[J]. Journal of Tsinghua University(Science and Tecnology), 2013, 53(3): 6353-6357. | |
[12] | GIDASPOW D. Multiphase flow and fluidization: Continuum and kinetic theory descriptions[M]. New York: Academic Press, 1994. |
[13] | SNIDER D M, CLARK S M, O'ROURKE P J. Eulerian-Lagrangian method for three-dimensional thermal reacting flow with application to coal gasifiers[J]. Chemical Engineering Science, 2011, 66(6): 1285-1295. |
[14] | SNIDER D M. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows[J]. Journal of Computational Physics, 2001, 170(2): 523-549. |
[15] | CHANG J, MA X R, WANG X, et al. CPFD modeling of hydrodynamics, combustion and NOx emissions in an industrial CFB boiler[J]. Particuology, 2023, 81: 174-188. |
[16] | YAN J, LU X F, XUE R, et al. Validation and application of CPFD model in simulating gas-solid flow and combustion of a supercritical CFB boiler with improved inlet boundary conditions[J]. Fuel Processing Technology, 2020, 208: 106512. |
[17] | JIA C X, LI J W, CHEN J J, et al. Simulation and prediction of co-combustion of oil shale retorting solid waste and cornstalk in circulating fluidized bed using CPFD method[J]. Applied Thermal Engineering, 2020, 165: 113574. |
[18] | QIU G Z, YE J M, WANG H G. Investigation of gas-solids flow characteristics in a circulating fluidized bed with annular combustion chamber by pressure measurements and CPFD simulation[J]. Chemical Engineering Science, 2015, 134: 433-447. |
[19] | DING H L, OUYANG Z Q, SU K-S, et al. Investigation of gas-solid flow characteristics in a novel internal fluidized bed combustor by experiment and CPFD simulation[J]. Advanced Powder Technology, 2023, 34(3):103962. |
[20] | THAPA R K, FROHNER A, TONDL G, et al. Circulating fluidized bed combustion reactor: Computational particle fluid dynamic model validation and gas feed position optimization[J]. Computers & Chemical Engineering, 2016,92: 180-188. |
[21] | XU L J, CHENG L M, JI J Q, et al. A comprehensive CFD combustion model for supercritical CFB boilers[J]. Particuology, 2019,43: 29-37. |
[22] | JI J, CHENG L, WEI Y, et al. Predictions of NOx/N2O emissions from an ultra-supercritical CFB boiler using a 2-D comprehensive CFD combustion model[J]. Particuology, 2020, 49: 77-87. |
[23] | YUAN Z H, CHEN Z C, WU X L, et al. An innovative low-NOxcombustion technology for industrial pulverized coal boiler: Gas-particle flow characteristics with different radial-air-staged levels[J]. Energy, 2022, 260: 125142. |
[24] | QIAO Y Y, LI S, JING X J, et al. Combustion and NOxformation characteristics from a 330 MWe retrofitted anthracite-fired utility boiler with swirl burner under deeply-staged-combustion[J]. Energy, 2022,258: 124832. |
[25] | WANG Y Q, ZHOU Y G, BAI N, et al. Experimental investigation of the characteristics of NOx emissions with multiple deep air-staged combustion of lean coal[J]. Fuel, 2020, 280: 118416. |
[26] | 刘文慧, 严博文, 吴江, 等. 基于平行控制理论的循环流化床锅炉床温智能预测模型[J]. 综合智慧能源, 2022, 44(3):51-57. |
LIU Wenhui, YAN Bowen, WU Jiang, et al. Intelligent prediction model of CFB boiler bed temperature based on parallel control theory[J]. Integrated Intelligent Energy, 2022, 44(3):51-57. | |
[27] |
李清扬, 李超, 蒋雨辰, 等. 半焦作为固体燃料的应用研究进展[J]. 综合智慧能源, 2023, 45(5):13-23.
doi: 10.3969/j.issn.2097-0706.2023.05.002 |
LI Qingyang, LI Chao, JIANG Yuchen, et al. Progress in utilization of semi-coke as solid fuel[J]. Integrated Intelligent Energy, 2023, 45(5):13-23.
doi: 10.3969/j.issn.2097-0706.2023.05.002 |
[1] | TONG Jialin, ZHANG Yan, LIU Wensheng, MAO Jianbo, YE Xuemin. Numerical simulation on co-combustion and alkali metal distribution in an opposed firing boiler mixed with sludge [J]. Integrated Intelligent Energy, 2024, 46(8): 50-58. |
[2] | ZHANG Lidong, LI Pei, JIANG Tieliu, LI Qinwei, ZHANG Lei, XU Feng, MENG Xin. Numerical simulation on the wind blocking and speed increasing effect of trough solar arrays [J]. Integrated Intelligent Energy, 2024, 46(6): 1-7. |
[3] | LI Pengzhen, JIA Bingke, LIU Yanhong, WU Zhenlong. Modified active disturbance rejection control on the post-combustion CO2 capture system [J]. Integrated Intelligent Energy, 2023, 45(8): 18-25. |
[4] | LI Qingyang, LI Chao, JIANG Yuchen, HU Xun. Progress in utilization of semi-coke as solid fuel [J]. Integrated Intelligent Energy, 2023, 45(5): 13-23. |
[5] | SHANG Yongqiang, WANG Wenfeng, WANG Weishu, GUO Jiawei, ZHENG Haonan, GE Xuewen. Analysis on the thermal insulation of long-distance steam heating pipes [J]. Integrated Intelligent Energy, 2023, 45(4): 47-51. |
[6] | YUAN Tianzhi, CHEN Ruiwen, Dilari YASHENG, XU Luoyun, HU Sideng. Research of parameter selection and accuracy optimization on event-driven simulation method of DC-DC converters [J]. Integrated Intelligent Energy, 2023, 45(3): 41-49. |
[7] | HAN Shiwang, ZHAO Ying, ZHANG Xingyu, XUAN Chengbo, ZHAO Tiantian, HOU Xukai, LIU Qianqian. Researches on hydrogen storage peak-shaving technology for new power systems to achieve carbon neutrality [J]. Integrated Intelligent Energy, 2022, 44(9): 20-26. |
[8] | GUO Guangzheng, GOU Yujun, ZHONG Xiaohui. Simulation study on the effect of flow channel's different cross-section on PV/T system performance [J]. Integrated Intelligent Energy, 2022, 44(4): 76-84. |
[9] | WANG Ding, XIAO Hu, CHEN Yuxuan, YUE Song, ZHANG Yanping. Preheating analysis on molten salt storage tank based on CFD method [J]. Huadian Technology, 2021, 43(7): 75-81. |
[10] | ZHAO Dazhou, WANG Mingxiang, RUAN Huifeng, GU Jing, WANG Mingxiao. Simulation and optimization for Urea-SCR system of the natural gas internal combustion engine in a distributed energy station [J]. Huadian Technology, 2021, 43(5): 45-52. |
[11] | CONG Xingliang, XIE Hong, SU Yang, ZHANG Jun, CHENG Yingjie. Experimental study on deep peak-load shaving of a 660 MW ultra-supercritical secondary reheating unit [J]. Huadian Technology, 2021, 43(5): 64-69. |
[12] | ZHANG Dongwang, FAN Haodong, ZHAO Bing, WANG Jialin, GONG Taiyi, ZHANG Man, LI Shiyuan, YANG Hairui, LYU Junfu. Development of biomass power generation technology at home and abroad [J]. Huadian Technology, 2021, 43(3): 70-75. |
[13] | LIU Yibin, LIU Xuankun, SONG Gang, YANG Xinhua, ZHANG Man, YANG Hairui. Study on the operation optimization of 350 MW supercritical pulverized coal-fired boiler firing 100% Zhundong coal [J]. Huadian Technology, 2021, 43(12): 79-84. |
[14] | ZHANG Kaiping, ZHANG Hongfu, GAO Mingming, WANG Yong, MA Cong. Research progress on biomass power generation in CFB boilers [J]. Huadian Technology, 2021, 43(10): 43-49. |
[15] | CHEN Quanxi, FU Jiangtao. Analysis and prospect of key factors affecting the coupling of municipal sludge combustion and coal-fired power plants [J]. Huadian Technology, 2021, 43(10): 50-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||