Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (6): 37-46.doi: 10.3969/j.issn.2097-0706.2025.06.005
• Intelligent Algorithms for New Energy • Previous Articles Next Articles
CHENG Xianlong(), MA Yun, HAN Junfeng, MO Ying, GAO Yan
Received:
2024-11-05
Revised:
2025-02-18
Published:
2025-06-25
Supported by:
CLC Number:
CHENG Xianlong, MA Yun, HAN Junfeng, MO Ying, GAO Yan. Research on economic scheduling of power systems with wind farms based on improved African vulture optimization algorithm[J]. Integrated Intelligent Energy, 2025, 47(6): 37-46.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.06.005
Table 1
Compromise solutions of various algorithms under different operation objectives
运行目标 | 优化算法 | 经济成本/万元 | 污染物排放/t | 损耗/MW | 功率平衡情况/MW |
---|---|---|---|---|---|
1 | MOPSO | 64.237 7 | 4.818 8 | 224.003 1 | 4.55E-13 |
NSGA | 64.317 7 | 4.774 0 | 232.973 8 | 2.22E-12 | |
MOGWO | 64.236 3 | 4.814 8 | 223.665 9 | -5.12E-13 | |
MOAOS | 64.261 8 | 4.644 3 | 229.917 7 | -3.32E-3 | |
MOAVOA | 64.246 1 | 4.700 4 | 224.092 5 | 2.56E-12 | |
MOIAVOA | 64.250 5 | 4.665 0 | 224.857 9 | 1.59E-12 | |
2 | MOPSO | 65.800 0 | 8.647 0 | 170.526 8 | -1.07E-4 |
NSGA | 67.244 7 | 8.495 8 | 168.366 0 | 2.88E-4 | |
MOGWO | 69.207 8 | 8.666 7 | 170.670 5 | -3.62E-4 | |
MOAOS | 65.858 2 | 8.876 8 | 170.192 8 | 1.64 E-4 | |
MOAVOA | 65.575 0 | 8.960 5 | 171.409 2 | -4.06E-4 | |
MOIAVOA | 65.573 6 | 8.410 3 | 171.063 3 | -1.88E-4 |
Table 2
Compromise solution scores of various algorithms under different operation objectives
运行目标 | 优化算法 | 折中解得分 | 平均得分 | |
---|---|---|---|---|
熵权法 | TOPSIS法 | |||
1 | MOPSO | 0.487 8 | 0.493 1 | 0.490 5 |
NSGA | 0.339 1 | 0.119 9 | 0.229 5 | |
MOGWO | 0.505 3 | 0.502 9 | 0.504 1 | |
MOAOS | 0.698 0 | 0.502 4 | 0.600 2 | |
MOAVOA | 0.734 7 | 0.580 5 | 0.657 6 | |
MOIAVOA | 0.788 9 | 0.591 2 | 0.690 0 | |
2 | MOPSO | 0.625 7 | 0.465 9 | 0.545 8 |
NSGA | 0.693 2 | 0.560 2 | 0.626 7 | |
MOGWO | 0.403 6 | 0.259 9 | 0.331 8 | |
MOAOS | 0.484 9 | 0.413 0 | 0.448 9 | |
MOAVOA | 0.415 8 | 0.365 9 | 0.390 8 | |
MOIAVOA | 0.775 7 | 0.515 0 | 0.645 3 |
Table 3
Compromise solutions for various algorithms under conditions of moderate wind power penetration with moderate load
优化算法 | 经济成本/万元 | 污染物排放/t | 损耗/MW | 功率平衡情况/MW | 得分 |
---|---|---|---|---|---|
MOPSO | 64.237 7 | 4.818 8 | 224.003 1 | 4.55E-13 | 0.487 8 |
NSGA | 64.317 7 | 4.774 0 | 232.973 8 | 2.22E-12 | 0.339 1 |
MOGWO | 64.236 3 | 4.814 8 | 223.665 9 | -5.12E-13 | 0.505 3 |
MOAOS | 64.261 7 | 4.644 3 | 229.917 7 | -3.32E-3 | 0.698 0 |
MOAVOA | 64.246 1 | 4.700 4 | 224.092 5 | 2.56E-12 | 0.734 7 |
MOIAVOA | 64.250 5 | 4.665 0 | 224.857 9 | 1.59E-12 | 0.788 9 |
Table 4
Compromise solutions for various algorithms under conditions of high wind power penetration with light or heavy load
优化算法 | 经济成本/万元 | 污染物排放/t | 损耗/MW | 功率平衡情况/MW | 得分 |
---|---|---|---|---|---|
MOPSO | 416.353 9/302.722 5 | 3.627 9/6.954 4 | 155.807 6/320.150 0 | 1.11E-12/-1.14E-12 | 0.672 8/0.522 5 |
NSGA | 416.196 7/302.773 0 | 3.615 4/6.871 3 | 154.915 6/344.102 4 | -2.84E-13/-3.69E-12 | 0.768 2/0.388 8 |
MOGWO | 416.966 8/302.723 3 | 3.636 7/6.934 4 | 159.642 8/319.437 4 | -9.91E-12/-3.41E-12 | 0.424 0/0.545 3 |
MOAOS | 41.642 9/302.748 3 | 3.598 5/6.548 0 | 155.568 3/324.748 7 | 4.80E-12/6.59E-12 | 0.789 4/0.824 5 |
MOAVOA | 416.227 3/302.729 8 | 3.647 3/6.682 3 | 154.256 1/320.958 5 | 3.13E-13/-3.92E-12 | 0.689 4/0.744 0 |
MOIAVOA | 416.569 8/302.742 8 | 3.580 9/6.541 8 | 154.239 4/323.265 3 | 3.98E-13/-4.04E-12 | 0.921 6/0.842 3 |
Table 5
Compromise solutions for various algorithms under conditions of low wind power penetration with light or high load
优化算法 | 经济成本/万元 | 污染物排放/t | 损耗/MW | 功率平衡情况/MW | 得分 |
---|---|---|---|---|---|
MOPSO | 420.448 9/306.137 3 | 3.722 8/8.014 7 | 113.165 2/296.444 6 | 1.75E-12/1.14E-12 | 0.546 3/0.596 9 |
NSGA | 420.497 7/306.297 5 | 3.702 9/7.940 7 | 114.785 8/319.281 6 | -4.30E-12/4.43E-12 | 0.461 2/0.434 8 |
MOGWO | 420.467 0/306.137 2 | 3.718 2/8.040 8 | 112.613 2/296.168 4 | 9.52E-13/2.73E-12 | 0.632 8/0.581 7 |
MOAOS | 420.544 3/306.152 1 | 3.685 4/7.617 5 | 112.703 4/298.753 2 | -4.41E-13/5.68E-13 | 0.789 1/0.846 6 |
MOAVOA | 420.456 2/306.140 7 | 3.682 7/7.837 6 | 113.004 5/298.321 9 | 2.60E-12/5.12E-12 | 0.771 2/0.700 4 |
MOIAVOA | 420.453 1/306.147 8 | 3.679 6/7.755 0 | 112.291 6/299.277 5 | -1.56E-13/1.71E-13 | 0.869 2/0.749 0 |
[1] | 朱彤. 气候变化、能源转型与新型能源安全[J]. 中国电力企业管理, 2024(16): 50-55. |
ZHU Tong. Climate change, energy transformation and new energy security[J]. China Power Enterprise Management, 2024(16): 50-55. | |
[2] | 翟昊岩. 新能源经济现状与发展策略[J]. 老字号品牌营销, 2024(10): 43-45. |
ZHAI Haoyan. Present situation and development strategy of new energy economy[J]. China Time-honored Brand, 2024(10): 43-45. | |
[3] | 龚钢军, 王路遥, 常卓越, 等. 基于能源枢纽的综合能源信息物理系统安全防护架构研究[J/OL]. 综合智慧能源, 1-8 (2023-07-03)[2025-01-03]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=SLDL20230630006&dbname=CJFD&dbcode=CJFQ. |
GONG Gangjun, WANG Luyao, CHANG Zhuoyue, et al. Research on security protection framework of comprehensive energy cyber-physical systems based on energy hub[J/OL]. China Industrial Economics, 1-8 (2023-07-03)[2025-01-03]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=SLDL20230630006&dbname=CJFD&dbcode=CJFQ. | |
[4] | MOSTAFA M H, RYAD A K, HUSSIEN S A, et al. Data-driven stochastic dynamic economic dispatch for combined heat and power systems using particle swarm optimization[J]. Energy Reports, 2024, 12: 4555-4567. |
[5] | 王京波, 李嗣, 杨洪明, 等. 博弈论在含风电场电力系统经济调度中的应用[J]. 电工技术, 2024(12): 27-29. |
WANG Jingbo, LI Si, YANG Hongming, et al. Application of game theory in economic dispatch of power system integrating wind generations[J]. Electric Engineering, 2024(12): 27-29. | |
[6] | BHAVSAR S, PITCHUMANI R, MAACK J, et al. Stochastic economic dispatch of wind power under uncertainty using clustering-based extreme scenarios[J]. Electric Power Systems Research, 2024, 229: 110158. |
[7] | YU G Z, ZHANG Z L, CUI G A, et al. Low-carbon economic dispatching strategy based on feasible region of cooperative interaction between wind-storage system and carbon capture power plant[J]. Renewable Energy, 2024, 228: 120706. |
[8] | ALI A, ASLAM S, KEERIO M U, et al. Optimal solution of multiobjective stable environmental economic power dispatch problem considering probabilistic wind and solar PV generation[J]. Heliyon, 2024, 10(20): e39041. |
[9] | WANG C H, MA Y, XIE J J, et al. Multi-objective energy dispatch with deep reinforcement learning for wind-solar-thermal-storage hybrid systems[J]. Journal of Energy Storage, 2025, 105: 114635. |
[10] | 徐胜, 郭萌, 吴杨, 等. 基于多变异集成差分进化的电力经济调度方法[J]. 自动化技术与应用, 2024, 43(12): 8-11, 54. |
XU Sheng, GUO Meng, WU Yang, et al. Electric power economic dispatch method based on multi mutation ensemble differential evolution[J]. Techniques of Automation and Applications, 2024, 43(12): 8-11, 54. | |
[11] | ZHANG X X, WU J K, SUN Y H, PENG Q J. Capacity allocation optimization of hybrid energy storage systems considering fluctuation control on offshore wind power[J]. Integrated Intelligent Energy, 2024, 46(6): 54-65. |
[12] | 田壁源, 戚红艳, 张新燕, 等. 基于MO-APSO的含风电场电力系统动态环境经济调度[J]. 电力系统保护与控制, 2019, 47(24): 57-64. |
TIAN Biyuan, QI Hongyan, ZHANG Xinyan, et al. Dynamic environmental economic dispatch of power system containing wind farms based on MO-APSO[J]. Power System Protection and Control, 2019, 47(24): 57-64. | |
[13] | 刘虹伶, 时维国. 基于灰狼优化的改进粒子群算法求解环境经济调度问题[J]. 电机与控制应用, 2024, 51(11): 97-109. |
LIU Hongling, SHI Weiguo. Solving environmental economic dispatch problem using an improved particle swarm optimization algorithm based on grey wolf optimization[J]. Electric Machines and Control Application, 2024, 51(11): 97-109. | |
[14] | QU L N, JI B X, LIM M K, et al. A hybrid static economic dispatch optimization model with wind energy: Improved pathfinder optimization model[J]. Energy Reports, 2023, 10: 3711-3723. |
[15] | 郝晓弘, 何侃. 基于NSGA-Ⅱ算法的含风电场的电力系统动态经济调度[J]. 电子设计工程, 2017, 25(11): 170-175. |
HAO Xiaohong, HE Kan. Dynamic economic dispatch considering wind power penetration based on NSGA-Ⅱ[J]. Electronic Design Engineering, 2017, 25(11): 170-175. | |
[16] | 江岳文, 陈冲, 温步瀛. 基于随机模拟粒子群算法的含风电场电力系统经济调度[J]. 电工电能新技术, 2007, 26(3): 37-41. |
JIANG Yuewen, CHEN Chong, WEN Buying. Economic dispatch based on particle swarm optimization of stochastic simulation in wind power integrated system[J]. Advanced Technology of Electrical Engineering and Energy, 2007, 26(3): 37-41. | |
[17] | 蒋承刚, 熊国江, 陈锦龙. 基于改进非支配多目标差分进化算法的含风电-小水电电力系统动态环境经济调度[J]. 电力科学与工程, 2021, 37(8): 1-9. |
JIANG Chenggang, XIONG Guojiang, CHEN Jinlong. Dynamic economic emission dispatching of power systems with wind power and small hydropower based on improved non-dominated multi-objective differential evolutionary algorithm[J]. Electric Power Science and Engineering, 2021, 37(8): 1-9. | |
[18] | 杨美春. 基于改进粒子群算法的电力系统经济调度研究[J]. 中国新技术新产品, 2025(3): 124-126. |
YANG Meichun. Research on economic dispatching of power system based on improved particle swarm optimization algorithm[J]. New Technology and New Products of China, 2025(3): 124-126. | |
[19] | 张郁, 苑波, 黄石成, 等. 考虑高比例可再生能源接入的有源配电网经济调度策略研究[J]. 电测与仪表, 2025, 62(1): 158-166. |
ZHANG Yu, YUAN Bo, HUANG Shicheng, et al. Research on economic dispatching strategy for active distribution network considering high penetration of renewable energy source[J]. Electrical Measurement & Instrumentation, 2025, 62(1): 158-166. | |
[20] | 张磊, 向紫藤, 余朋军, 等. 基于绿色证书交易机制的含风电场电力系统动态环境经济调度[J]. 智慧电力, 2021, 49(10): 75-82. |
ZHANG Lei, XIANG Ziteng, YU Pengjun, et al. Dynamic environmental economic dispatch of power system with wind farm based on green certificate transaction mechanisms[J]. Smart Power, 2021, 49(10): 75-82. | |
[21] | 王隔霞, 王军平, 孙明杨, 等. 基于改进蚱蜢算法的微电网多目标环境经济调度问题[J]. 上海电机学院学报, 2024, 27(4): 219-223, 236. |
WANG Gexia, WANG Junping, SUN Mingyang, et al. The multi-objective economic environment dispatch problem of microgrid based on improved grasshopper optimization algorithm[J]. Journal of Shanghai Dianji University, 2024, 27(4): 219-223, 236. | |
[22] | 张子泳, 仉梦林, 李莎. 基于多目标粒子群算法的电力系统环境经济调度研究[J]. 电力系统保护与控制, 2017, 45(10): 1-10. |
ZHANG Ziyong, ZHANG Menglin, LI Sha. Environmental/economic power dispatch based on multi-objective particle swarm constraint optimization algorithm[J]. Power System Protection and Control, 2017, 45(10): 1-10. | |
[23] | 姜文, 程叶霞, 严正, 等. 考虑可靠性约束的含风电场电力系统动态经济调度[J]. 电力自动化设备, 2013, 33(7): 27-33. |
JIANG Wen, CHENG Yexia, YAN Zheng, et al. Reliability-constrained dynamic economic dispatch of power system with wind farms[J]. Electric Power Automation Equipment, 2013, 33(7): 27-33. | |
[24] | 蒋慧, 戴文俊. 基于CQPSO算法的含风电场电力系统经济调度研究[J]. 井冈山大学学报(自然科学版), 2021, 42(1): 76-81. |
JIANG Hui, DAI Wenjun. Research of economic dispatch of power system with wind farms based on chaos quantum particle swarm optimization algorithm[J]. Journal of Jinggangshan University (Natural Science), 2021, 42(1): 76-81. | |
[25] | 李德英, 陈希祥, 陈钢, 等. 风电场穿透功率风险下基于改进NSGA-2的动态经济调度方法[J]. 可再生能源, 2022, 40(10): 1365-1371. |
LI Deying, CHEN Xixiang, CHEN Gang, et al. Dynamic economic dispatch considering wind farm penetration risk based improved NSGA-2 algorithm[J]. Renewable Energy Resources, 2022, 40(10): 1365-1371. | |
[26] | ABDOLLAHZADEH B, GHAREHCHOPOGH F S, MIRJALILI S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems[J]. Computers and Industrial Engineering, 2021, 158: 107408. |
[27] | 吴锋. 基于改进非洲秃鹫优化算法的电动汽车充电站选址优化研究[D]. 济南: 山东大学, 2022. |
WU Feng. Research on location optimization of electric vehicle charging station based on improved African vulture optimization algorithm[D]. Ji'nan: Shandong University, 2022. | |
[28] | 张仲秀, 徐雅, 孙大明, 等. 基于改进AVOA的小型自由活塞斯特林制冷机控制算法研究[J]. 低温工程, 2024(4): 86-94. |
ZHANG Zhongxiu, XU Ya, SUN Daming, et al. Research on control algorithm of small free piston Stirling cryocooler based on modified AVOA[J]. Cryogenics, 2024(4): 86-94. | |
[29] | 申晋祥, 鲍美英, 张景安, 等. 混沌自适应非洲秃鹫优化算法训练多层感知器[J]. 计算机工程与设计, 2024, 45(2): 546-552. |
SHEN Jinxiang, BAO Meiying, ZHANG Jing'an, et al. Chaotic adaptive African vulture optimization algorithm for training multilayer perceptron[J]. Computer Engineering and Design, 2024, 45(2): 546-552. | |
[30] | 程先龙, 王川, 张杰, 等. 基于多目标原子轨道搜索算法的风电场集群最优经济调度[J]. 电力系统保护与控制, 2024, 52(6): 77-87. |
CHENG Xianlong, WANG Chuan, ZHANG Jie, et al. Optimal economic dispatch of wind farm clusters based on multi-objective atomic orbital search[J]. Power System Protection and Control, 2024, 52(6): 77-87. | |
[31] | 杨晓燕, 谢满承, 郭小璇, 等. 基于改进原子轨道搜索算法优化随机森林分类器的光伏系统故障诊断[J]. 综合智慧能源, 2023, 45(10): 53-60. |
YANG Xiaoyan, XIE Mancheng, GUO Xiaoxuan, et al. PV system fault diagnosis based on random forest classifier optimized by improved atomic orbital search algorithm[J]. Integrated Intelligent Energy, 2023, 45(10): 53-60. |
[1] | WANG Cheng, SHAO Chong, HE Xin, DONG Haiying. Optimal power allocation for electrochemical energy storage power stations based on MOIBKA algorithm [J]. Integrated Intelligent Energy, 2025, 47(6): 74-84. |
[2] | FAN Yanbo, XIONG Yaxuan, LI Xiang, TIAN Xi, YANG Yang. Advancement in multi-objective optimization for building energy use based on genetic algorithms [J]. Integrated Intelligent Energy, 2024, 46(9): 69-85. |
[3] | CHEN Yong, XIAO Leiming, WANG Jingnan, WU Jian. Capacity planning method with high reliability for integrated energy systems with low-carbon emissions based on scenario expansion [J]. Integrated Intelligent Energy, 2024, 46(4): 24-33. |
[4] | TANG Zihan, WANG Shuaijie, JU Zhenhe, LEI Zhiqi. Performance optimization of photovoltaic/thermal systems coupled with air source heat pumps [J]. Integrated Intelligent Energy, 2024, 46(4): 34-41. |
[5] | SUN Jian, ZHANG Yunfan, CAI Xiaolong, LIU Dingqun. Optimal scheduling of HVAC systems based on predicted loads [J]. Integrated Intelligent Energy, 2024, 46(3): 12-19. |
[6] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[7] | ZHEN Xiaofei, LI Shang'e, ZHANG Yongheng, JIAO Ruonan, WU Wenbing. Research on multi-objective optimization of envelope structures for nearly zero-energy buildings in Northwest China [J]. Integrated Intelligent Energy, 2024, 46(12): 81-90. |
[8] | WANG Haiming, ZHANG Runzhi, ZHOU Jiahui, XU Gang, GENG Jiaxi. Optimal capacity configuration of off-grid wind-solar hybrid hydrogen production and green ammonia synthesis system [J]. Integrated Intelligent Energy, 2024, 46(11): 73-82. |
[9] | BAI Zhang, HAO Wenjie, LI Qi, HAO hongliang, WEN Caifeng, GUO Su, HUANG Xiankun. Capacity configuration optimization of wind‒solar hydrogen production based on life cycle assessment [J]. Integrated Intelligent Energy, 2024, 46(10): 1-11. |
[10] | ZHANG Li, JIN Li, REN Juguang, LIU Xiaobing. Research on load regulation strategy of integrated energy systems considering meteorological factors and time-of-use tariffs [J]. Integrated Intelligent Energy, 2024, 46(1): 18-27. |
[11] | BAO Yixin, XU Luoyun, YANG Qiang. Optimized control method for flexible load of a building complex based on MADDPG reinforcement learning [J]. Integrated Intelligent Energy, 2023, 45(7): 61-69. |
[12] | WANG Xin, CHEN Zucui, BIAN Zaiping, WANG Yeyao, WU Yumiao. Optimal allocation of a wind‒PV‒battery hybrid system in smart microgrid based on particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2022, 44(6): 52-58. |
[13] | Leijiao GE, Qingxue CUI, Mingwei LI, Fang YAO, Xiaona YANG, Tianshuo DU. Review on water electrolysis for hydrogen production powered by fluctuating wind power and PV [J]. Integrated Intelligent Energy, 2022, 44(5): 1-14. |
[14] | Hengyuan GUO, Xiaofeng FENG, Guodong LI, Zhiguo DUAN, Yuanzheng LI. Low-carbon collaborative optimization for the commitment and maintenance of units considering hydrogen production equipment [J]. Integrated Intelligent Energy, 2022, 44(5): 78-87. |
[15] | XU Zhirong, ZHANG Gaorui. Optimization strategy of microgrid responding users' bounded rational demand [J]. Integrated Intelligent Energy, 2022, 44(11): 43-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||