[1] |
魏书洲, 李兵发, 孙晨阳, 等. 压缩空气储能技术及其耦合发电机组研究进展[J]. 华电技术, 2021, 43(7):9-16.
|
|
WEI Shuzhou, LI Bingfa, SUN Chenyang, et al. Research progress of compressed air energy storage technology and its coupling generator sets[J]. Huadian Technology, 2021, 43(7):9-16.
|
[2] |
CHAE Y J, LEE J I. Thermodynamic analysis of compressed and liquid carbon dioxide energy storage system integrated with steam cycle for flexible operation of thermal power plant[J]. Energy Conversion and Management, 2022, 256: 115374.
doi: 10.1016/j.enconman.2022.115374
|
[3] |
KANTHARAJ B, GARVEY S, PIMM A. Thermodynamic analysis of a hybrid energy storage system based on compressed air and liquid air[J]. Sustainable Energy Technologies and Assessments, 2015, 11:159-164.
doi: 10.1016/j.seta.2014.11.002
|
[4] |
韩中合, 郭森闯, 王珊, 等. 不同工质和储气室下压气储能系统的特性研究[J]. 太阳能学报, 2020, 41(9):29-35.
|
|
HAN Zhonghe, GUO Senchuang, WANG Shan, et al. Research on the characteristics of compressed air energy storage system under different working fluids and gas storage chambers[J]. Journal of Solar Energy, 2020, 41(9):29-35.
|
[5] |
WANG M, ZHAO P, WU Y, et al. Performance analysis of a novel energy storage system based on liquid carbon dioxide[J]. Applied Thermal Engineering, 2015, 91:812-823.
doi: 10.1016/j.applthermaleng.2015.08.081
|
[6] |
ZHAO P, XU W P, ZHANG S Q, et al. Components design and performance analysis of a novel compressed carbon dioxide energy storage system: A pathway towards realizability[J]. Energy Conversion and Management, 2021, 229:113679.
doi: 10.1016/j.enconman.2020.113679
|
[7] |
ZHAO P, XU W P, GOU F F, et al. Performance analysis of a self‑condensation compressed carbon dioxide energy storage system with vortex tube[J]. Journal of Energy Storage, 2021, 41:102995.
doi: 10.1016/j.est.2021.102995
|
[8] |
ZHANG Y, LIANG T Y, YANG K. An integrated energy storage system consisting of compressed carbon dioxide energy storage and organic Rankine cycle:Exergy economic evaluation and multi-objective optimization[J]. Energy, 2022, 247:123566.
doi: 10.1016/j.energy.2022.123566
|
[9] |
GUO H, XU Y J, CHEN H S, et al. Thermodynamic characteristics of a novel supercritical compressed air energy storage system[J]. Energy Conversion and Management, 2016, 115:167-177.
doi: 10.1016/j.enconman.2016.01.051
|
[10] |
ZHAO P, DAI Y P, WANG J F. Performance assessment and optimization of a combined heat and power system based on compressed air energy storage system and humid air turbine cycle[J]. Energy Conversion and Management, 2015(103):562-572.
|
[11] |
FU H, HE Q, SONG J, et al. Thermodynamic of a novel solar heat storage compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2021, 247:114757.
doi: 10.1016/j.enconman.2021.114757
|
[12] |
CHEN K Q, PU W H, ZHANG Q, et al. Thermodynamic and economic assessment on the supercritical compressed carbon dioxide energy storage system coupled with solar thermal storage[J]. Journal of Energy Storage, 2021, 41: 102959.
doi: 10.1016/j.est.2021.102959
|
[13] |
XU M J, WANG X, WANG Z H, et al. Preliminary design and performance assessment of compressed supercritical carbon dioxide energy storage system[J]. Applied Thermal Engineering, 2021, 183: 116153.
doi: 10.1016/j.applthermaleng.2020.116153
|
[14] |
SUN L, XIE Y. Preliminary analysis and optimization of a thermoelectrical system based on the S-CO2cycle[J]. Heat Transfer Research, 2020, 51(2):103-113.
doi: 10.1615/HeatTransRes.v51.i2
|
[15] |
STANEKARTOSZ B, OCHMANN J, BARTELA L, et al. Isobaric tanks system for carbon dioxide energy storage—The performance analysis[J]. Journal of Energy Storage, 2022, 52: 104826.
doi: 10.1016/j.est.2022.104826
|
[16] |
戴义平, 胡东帅, 王明坤, 等. 一种新型的跨临界CO2储能系统[J]. 西安交通大学学报, 2016, 50(3):45-49.
|
|
DAI Yiping, HU Dongshuani, WANG Mingkun, et al. A novel transcritical CO2 energy storage system[J]. Journal of Xi 'an Jiaotong University, 2016, 50(3):45-49.
|
[17] |
赵攀, 张仕强, 许文盼, 等. 具备近似等压放电过程的近似等温压缩CO2储能系统特性研究[J]. 西安交通大学学报, 2023, 57(1):34-44.
|
|
ZHAO Pan, ZHANG Shiqiang, XU Wenpan, et al. Study on the characteristics of an approximate isothermal compression CO2 energy storage system with an approximate isobaric discharge process[J]. Journal of Xi'an Jiaotong University, 2023, 57(1):34-44.
|
[18] |
ZHANG X R, WANG G B. Thermodynamic analysis of a novel energy storage system based on compressed CO2 fluid[J]. International Journal of Energy Research, 2017, 41(10): 1487-1503.
doi: 10.1002/er.v41.10
|
[19] |
CAO Z, DENG J Q, ZHOU S H, et al. Research on the feasibility of compressed carbon dioxide energy storage system with underground sequestration in antiquated mine goaf[J]. Energy Conversion and Management, 2020, 211: 112788.
doi: 10.1016/j.enconman.2020.112788
|
[20] |
ZHANG Y, WU Y T, YANG K. Dynamic characteristics of a two-stage compression and two‑stage expansion compressed carbon dioxide energy storage system under sliding pressure operation[J]. Energy conversion & management, 2022, 254(2): 115218.
|
[21] |
AGHAGOLI A, SORIN M. CFD modelling and exergy analysis of a heat pump cycle with Tesla turbine using CO2 as a working fluid[J]. Applied Thermal Engineering, 2020, 178:115587.
doi: 10.1016/j.applthermaleng.2020.115587
|
[22] |
徐好, 高建业, 王金锋, 等. CO2跨临界双级压缩制冷系统的㶲分析[J]. 食品与机械, 2023, 39(7):77-84.
|
|
XU Hao, GAO Jianye, WANG Jinfeng, et al. Analysis of CO2 transcritical two‑stage compression refrigeration system[J]. Food and machinery, 2023, 39(7):77-84.
|
[23] |
IVERSON B D, CONBOY T M, PASCH J J, et al. Supercritical CO2 Brayton cycles for solar‑thermal energy[J]. Applied Energy, 2013, 111:957-970.
doi: 10.1016/j.apenergy.2013.06.020
|