综合智慧能源 ›› 2026, Vol. 48 ›› Issue (1): 43-58.doi: 10.3969/j.issn.2097-0706.2026.01.005
潘雷(
), 丁云飞(
), 庞毅*(
), 王宇璇(
), 陈建伟(
), 高瑞(
), 张立阳(
)
收稿日期:2025-08-12
修回日期:2025-10-21
出版日期:2026-01-25
通讯作者:
*庞毅(1984),男,讲师,博士,从事综合能源系统规划方面的研究,primepang@163.com。作者简介:潘雷(1981),男,教授,博士,从事新能源发电与电力电子技术、智能控制与智能系统等方面的研究,panlei4089@163.com;基金资助:
PAN Lei(
), DING Yunfei(
), PANG Yi*(
), WANG Yuxuan(
), CHEN Jianwei(
), GAO Rui(
), ZHANG Liyang(
)
Received:2025-08-12
Revised:2025-10-21
Published:2026-01-25
Supported by:摘要:
可再生能源-制氢-制甲醇一体站(REHMIS)通过利用可再生能源发电制取绿氢,并进一步将绿氢与二氧化碳合成甲醇,从而实现绿氢对传统化石能源制氢的替代。为了同时满足REHMIS的甲醇负荷需求及其配套建筑的多能源需求,设计了新型综合能源系统(IES)拓扑结构REHMIS-IES。为获得REHMIS-IES高效运行策略,提出了一种基于严格约束的软演员-评论家(SC-SAC)算法执行框架。将所建数学模型转化为马尔可夫决策过程,同时引入状态约束机制(SCM)以避免储能系统状态出现剧烈波动。在SC-SAC算法的执行阶段,将训练后的Q网络与动作约束转化成混合整数线性规划(MILP)模型,以保证调度决策能够满足各项运行约束。多场景仿真结果表明:所提系统在保障多能需求的同时可有效降低运行成本;与其他深度强化学习算法相比,SC-SAC算法可使系统能量不平衡度降低约16.2%,运行成本至少下降11.7%。
中图分类号:
潘雷, 丁云飞, 庞毅, 王宇璇, 陈建伟, 高瑞, 张立阳. 基于SC-SAC算法的REHMIS-IES优化调度策略[J]. 综合智慧能源, 2026, 48(1): 43-58.
PAN Lei, DING Yunfei, PANG Yi, WANG Yuxuan, CHEN Jianwei, GAO Rui, ZHANG Liyang. Optimal scheduling strategy for REHMIS-IES based on SC-SAC algorithm[J]. Integrated Intelligent Energy, 2026, 48(1): 43-58.
表1
系统设备参数
| 设备 | 参数 | 数值 |
|---|---|---|
| WT | 800 | |
| vin/(m·s-1) | 3.5 | |
| vout/(m·s-1) | 25.0 | |
| vr/(m·s-1) | 12.0 | |
| nwt | 2 | |
| PV | 0.265 | |
| fpv/% | 80 | |
| Eref/(kW·m-2) | 1 | |
| δ/(%·℃-1) | 0.47 | |
| tref/℃ | 25 | |
| EL | r1/(Ω·m2) | 3.538 55×10-4 |
| r2/[Ω·m2)·℃-1] | -3.021 50×10-6 | |
| s/V | 2.239 6×10-1 | |
| t1/(m2·A-1) | 5.130 93 | |
| t2/[(m2·℃)·A-1] | -2.404 47×102 | |
| t3/[(m2·℃)·A-1] | 5.995 76×103 | |
| A/m2 | 0.25 | |
| f1/(mA2·cm-4) | 250 | |
| f2 | 0.96 | |
| F/(C·mol-1) | 96 485 | |
| HT | mHTN/kg | 800 |
| SHT_min/SHT_max/% | 0/90 | |
| 压缩机 | c/[kJ·(kg·K)-1] | 14.304 |
| T1/K | 293 | |
| ηc | 0.75 | |
| κ | 1.4 | |
| HST | QHSTN/(kW·h) | 1 000 |
| SHST_in/SHST_out/% | 0/90 | |
| 甲醇合成装置 | 0.169 | |
| AC | 750 |
| [1] | 张普育. 双碳背景下风光储一体化可再生能源绿色标准化发展及实践[J]. 中国标准化, 2024(S2): 72-76. |
| ZHANG Puyu. Development and practice of green standardization of renewable energy with integration of wind, solar energy and storage under the background of double carbon[J]. China Standardization, 2024(S2): 72-76. | |
| [2] | 武魏楠. 风光氢融合,开启双万亿级绿色燃料市场[J]. 能源, 2025(3): 62-64. |
| WU Weinan. Wind, light and hydrogen fusion, opening up the double trillion-level green fuel market[J]. Energy, 2025(3): 62-64. | |
| [3] | 张晓峰, 艾芊, 陈旻昱. 基于风-氢-甲醇-碳捕集一体化的综合能源系统经济运行建模分析[J]. 现代电力, 2024, 41(4): 699-709. |
| ZHANG Xiaofeng, AI Qian, CHEN Minyu. Economic operation modeling analysis of integrated energy system based on integration of wind-hydrogen-methanol-carbon capture[J]. Modern Electric Power, 2024, 41(4): 699-709. | |
| [4] | 王金龙. 考虑电转甲醇技术的园区级综合能源系统优化配置研究[J]. 节能, 2023, 42(11): 78-80. |
| WANG Jinlong. Study on optimal allocation of park-level comprehensive energy system considering electricity-to-methanol technology[J]. Energy Conservation, 2023, 42(11): 78-80. | |
| [5] | 张润之, 周家辉, 梁士兴, 等. 离网式风光氢醇一体化系统容量配置运行调度优化及经济性分析[J]. 热力发电, 2024, 53(2): 48-58. |
| ZHANG Runzhi, ZHOU Jiahui, LIANG Shixing, et al. Capacity configuration-operation scheduling optimization and economic analysis of the off grid wind and solar hydrogen alcohol integrated system[J]. Thermal Power Generation, 2024, 53(2): 48-58. | |
| [6] | 吕志鹏, 宋振浩, 李立生, 等. 含电动汽车的工业园区综合能源系统优化调度[J]. 中国电力, 2024, 57(4): 25-31. |
| LYU Zhipeng, SONG Zhenhao, LI Lisheng, et al. Optimization scheduling of integrated energy system scheduling in industrial park containing electric vehicles[J]. Electric Power, 2024, 57(4): 25-31. | |
| [7] |
燕兵, 杨志林, 张岩, 等. 含海上风电制氢和多重响应的综合能源系统源-荷多时间尺度优化调度[J]. 南方电网技术, 2025, 19(6): 105-118.
doi: 10.13648/j.cnki.issn1674-0629.2025.06.010 |
|
YAN Bing, YANG Zhilin, ZHANG Yan, et al. Optimization of source-charge multi-time scale for hydrogen integrated energy system including hydrogen production from offshore wind power and multiple responses[J]. Southern Power System Technology, 2025, 19(6):105-118.
doi: 10.13648/j.cnki.issn1674-0629.2025.06.010 |
|
| [8] | 安源, 李洋, 赵亭玉, 等. 考虑氨能多元利用与混合储能的综合能源系统双层优化调度[J]. 太阳能学报, 2025, 46(6): 89-98. |
| AN Yuan, LI Yang, ZHAO Tingyu, et al. Double-layer optimal scheduling of integrated energy system considering ammonia energy multiple utilization and hybrid energy storage[J]. Acta Energiae Solaris Sinica, 2025, 46(6): 89-98. | |
| [9] |
谭甲群, 吕如轩, 鞠洪晋, 等. 基于改进秃鹰搜索算法的风光火储综合能源系统优化调度策略研究[J]. 综合智慧能源, 2025, 47(8): 68-76.
doi: 10.3969/j.issn.2097-0706.2025.08.008 |
|
TAN Jiaqun, RuxuanLYU, JU Hongjin, et al. Research on optimal scheduling strategy of wind-photovoltaic-thermal-storage integrated energy system based on IBES[J]. Integrated Intelligent Energy, 2025, 47(8): 68-76.
doi: 10.3969/j.issn.2097-0706.2025.08.008 |
|
| [10] |
REN P, DONG Y C, ZHANG H L, et al. A unified robust planning framework for hydrogen energy multi-scale regulation of integrated energy system[J]. Energy, 2025, 314: 134325.
doi: 10.1016/j.energy.2024.134325 |
| [11] | 李天明, 王小君, 窦嘉铭, 等. 基于约束强化学习的综合能源系统优化调度研究[J]. 电力系统保护与控制, 2025, 53(6): 1-14. |
| LI Tianming, WANG Xiaojun, DOU Jiaming, et al. Research on optimal dispatch of integrated energy systems based on constrained reinforcement learning[J]. Power System Protection and Control, 2025, 53(6): 1-14. | |
| [12] |
LIU F, LIU Q Y, TAO Q, et al. Deep reinforcement learning based energy storage management strategy considering prediction intervals of wind power[J]. International Journal of Electrical Power & Energy Systems, 2023, 145: 108608.
doi: 10.1016/j.ijepes.2022.108608 |
| [13] | 杨挺, 刘豪, 王静, 等. 基于深度强化学习的园区综合能源系统低碳经济调度[J]. 电网技术, 2024, 48(9): 3604-3613. |
| YANG Ting, LIU Hao, WANG Jing, et al. Deep reinforcement learning-based low-carbon economic dispatch of park integrated energy system[J]. Power System Technology, 2024, 48(9): 3604-3613. | |
| [14] | 梁涛, 柴露露, 谭建鑫, 等. 基于深度强化学习算法的氢耦合电-热综合能源系统优化调度[J]. 电力自动化设备, 2025, 45(1): 59-66. |
| LIANG Tao, CHAI Lulu, TAN Jianxin, et al. Optimal scheduling of hydrogen coupled electrothermal integrated energy system based on deep reinforcement learning algorithm[J]. Electric Power Automation Equipment, 2025, 45(1): 59-66. | |
| [15] |
包义辛, 徐椤赟, 杨强. 基于MADDPG算法的建筑群柔性负荷优化调控方法[J]. 综合智慧能源, 2023, 45(7): 61-69.
doi: 10.3969/j.issn.2097-0706.2023.07.007 |
|
BAO Yixin, XU Luoyun, YANG Qiang. Optimized control method for flexible load of a building complex based on MADDPG reinforcement learning[J]. Integrated Intelligent Energy, 2023, 45(7): 61-69.
doi: 10.3969/j.issn.2097-0706.2023.07.007 |
|
| [16] |
DONG Y C, ZHANG H H, WANG C, et al. Soft actor-critic DRL algorithm for interval optimal dispatch of integrated energy systems with uncertainty in demand response and renewable energy[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107230.
doi: 10.1016/j.engappai.2023.107230 |
| [17] |
李明扬, 窦梦园. 基于强化学习的含电动汽车虚拟电厂优化调度[J]. 综合智慧能源, 2024, 46(6): 27-34.
doi: 10.3969/j.issn.2097-0706.2024.06.004 |
|
LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning[J]. Integrated Intelligent Energy, 2024, 46(6): 27-34.
doi: 10.3969/j.issn.2097-0706.2024.06.004 |
|
| [18] | 张磊, 吴红斌, 何叶, 等. 基于深度强化学习的氢能综合能源系统优化调度方法[J]. 电力系统自动化, 2024, 48(16): 132-141. |
| ZHANG Lei, WU Hongbin, HE Ye, et al. Optimal scheduling method of hydrogen comprehensive energy system based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2024, 48(16): 132-141. | |
| [19] |
LU Y, XIANG Y, HUANG Y, et al. Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load[J]. Energy, 2023, 271: 127087.
doi: 10.1016/j.energy.2023.127087 |
| [20] |
LIANG T, ZHANG X C, TAN J X, et al. Deep reinforcement learning-based optimal scheduling of integrated energy systems for electricity, heat, and hydrogen storage[J]. Electric Power Systems Research, 2024, 233:110480.
doi: 10.1016/j.epsr.2024.110480 |
| [21] | 王永利, 向皓, 李淑清. 考虑冷热电三联供系统耦合特性的区域综合能源系统运行优化[J]. 科学技术与工程, 2023, 23(18): 7787-7797. |
| WANG Yongli, XIANG Hao, LI Shuqing. Regional integrated energy system considering combined cooling heating and power system coupling characteristics on operation optimization[J]. Science Technology and Engineering, 2023, 23(18): 7787-7797. | |
| [22] |
郑昊宇, 周家辉, 仝冰, 等. 配置压缩空气储能的绿氢系统容量配置和运行调度优化研究[J]. 综合智慧能源, 2025, 47(7): 64-70.
doi: 10.3969/j.issn.2097-0706.2025.07.007 |
|
ZHENG Haoyu, ZHOU Jiahui, TONG Bing, et al. Research on capacity allocation and operation scheduling optimization of green hydrogen system with compressed air energy storage[J]. Integrated Intelligent Energy, 2025, 47(7): 64-70.
doi: 10.3969/j.issn.2097-0706.2025.07.007 |
|
| [23] | ALI F, AHMAR M, JIANG Y X, et al. A techno-economic assessment of hybrid energy systems in rural Pakistan[J]. Energy, 2021, 215: 119103. DOI:10.1016/j.energy.2020.119103. |
| [24] |
GHORBANI B, ZENDEHBOUDI S, MORADI M. Development of an integrated structure of hydrogen and oxygen liquefaction cycle using wind turbines, Kalina power generation cycle, and electrolyzer[J]. Energy, 2021, 221: 119653.
doi: 10.1016/j.energy.2020.119653 |
| [25] |
LIANG T, CHEN M J, TAN J X, et al. Large-scale off-grid wind power hydrogen production multi-tank combination operation law and scheduling strategy taking into account alkaline electrolyzer characteristics[J]. Renewable Energy, 2024, 232: 121122.
doi: 10.1016/j.renene.2024.121122 |
| [26] |
BHOGILLA S S, NIYAS H. Design of a hydrogen compressor for hydrogen fueling stations[J]. International Journal of Hydrogen Energy, 2019, 44(55): 29329-29337.
doi: 10.1016/j.ijhydene.2019.02.171 |
| [27] | 岑增光, 耿斌, 高明海, 等. 考虑天然气混氢的园区综合能源系统电制氢优化配置[J]. 电力工程技术, 2024, 43(2): 55-64. |
| CEN Zengguang, GENG Bin, GAO Minghai, et al. Optimal configuration of P2H in the park integrated energy system considering natural gas mixed with hydrogen[J]. Electric Power Engineering Technology, 2024, 43(2): 55-64. | |
| [28] |
ZHOU Y, WANG J J, LIU Y, et al. Incorporating deep learning of load predictions to enhance the optimal active energy management of combined cooling, heating and power system[J]. Energy, 2021, 233: 121134.
doi: 10.1016/j.energy.2021.121134 |
| [29] | CECCON F, JALVING J, HADDAD J, et al. OMLT: optimization & machine learning toolkit[J]. Journal of Machine Learning Research, 2022,23:1-8. |
| [30] |
FISCHETTI M, JO J. Deep neural networks and mixed integer linear optimization[J]. Constraints, 2018, 23(3): 296-309.
doi: 10.1007/s10601-018-9285-6 |
| [31] | Optimization Gurobi. Gurobi官方网站[EB/OL]. [2025-07-31]. https://www.gurobi.com. |
| [32] | Department of Energy. Commercial reference buildings[EB/OL].[2025-07-31]. https://www.energy.gov/eere/buildings/commercial-reference-buildings. |
| [33] | PEEL M C, FINLAYSON B L, MCMAHON T A. Updated world map of the Köppen-Geiger climate classification[J]. Hydrology & Earth System Sciences, 2007, 11(3):259-263. |
| [34] |
陈志鼎, 董亿, 滕明月. 考虑风-光不确定性的风-光-蓄-火联合调度研究[J]. 中国农村水利水电, 2024(8): 208-215.
doi: 10.12396/znsd.232067 |
|
CHEN Zhiding, DONG Yi, TENG Mingyue. Hybrid generation of wind-solar-pumped storage-thermal systems considering wind-solar uncertainties[J]. China Rural Water and Hydropower, 2024(8): 208-215.
doi: 10.12396/znsd.232067 |
| [1] | 徐聪, 徐静静, 江婷, 薛东, 闫立辰. 数据驱动的综合能源系统运行优化研究[J]. 综合智慧能源, 2026, 48(1): 34-42. |
| [2] | 薛东, 徐静静, 江婷, 王晓海, 徐聪. 基于双重特征处理的园区综合能源系统供热负荷预测研究[J]. 综合智慧能源, 2026, 48(1): 59-66. |
| [3] | 梁富光, 马忠强. 基于评价因子重构与DECN-BiGRU的海岛微电网负荷预测[J]. 综合智慧能源, 2026, 48(1): 85-97. |
| [4] | 窦翔, 李卓群, 张哲, 温鑫, 赵勃, 韩燕, 仲声. 基于CNN-BiLSTM-RF-KDE的综合能源系统负荷预测[J]. 综合智慧能源, 2025, 47(9): 60-70. |
| [5] | 张元曦, 杨国华, 马龙腾, 马鑫, 刘耀泽. 基于改进DE算法的园区微电网风光储优化配置[J]. 综合智慧能源, 2025, 47(9): 71-79. |
| [6] | 周凯, 吴炎喜, 黄宇翔, 杨景豪, 樊小朝, 李建伟, 魏志宗, 滕建, 陈历, 叶琴, 张浩, 姜军南. 大海拔高差地区固体流大规模重力储能技术[J]. 综合智慧能源, 2025, 47(8): 1-9. |
| [7] | 甄文喜, 马喜平, 戴跃洪, 牛炜, 陈柏旭, 曾桂. 基于中间层控制的风-储自同步调频策略研究[J]. 综合智慧能源, 2025, 47(8): 21-29. |
| [8] | 褚龙浩, 李笑竹. 共享储能参与下的多类型电能交易投标策略及价值分配机制[J]. 综合智慧能源, 2025, 47(8): 30-39. |
| [9] | 谭甲群, 吕如轩, 鞠洪晋, 洪春雪, 肖海平, 雷兢, 韩振兴. 基于改进秃鹰搜索算法的风光火储综合能源系统优化调度策略研究[J]. 综合智慧能源, 2025, 47(8): 68-76. |
| [10] | 宋坤, 顾文波. 考虑不确定性的综合能源系统建模及优化研究进展[J]. 综合智慧能源, 2025, 47(7): 32-43. |
| [11] | 陈亮, 刘桂英, 粟时平, 唐长久, 王辰浩, 郭思桐. 基于双层网络PER-MADDPG算法的综合能源系统协调优化调度[J]. 综合智慧能源, 2025, 47(7): 44-54. |
| [12] | 郑昊宇, 周家辉, 仝冰, 王海鸣, 徐钢, 张资悦. 配置压缩空气储能的绿氢系统容量配置和运行调度优化研究[J]. 综合智慧能源, 2025, 47(7): 64-70. |
| [13] | 邢作霞, 赵子逸, 孙浩, 张鹏飞, 付启桐. 基于电制氢多级利用的综合能源系统低碳经济运行优化研究[J]. 综合智慧能源, 2025, 47(7): 71-81. |
| [14] | 张德斌, 林文野, 何梓轩, 岳心如, 宋文吉, 冯自平, FARID Mohammed Mehdi, USHAK DE GRAGEDA Svetlana Nikolaevna. 计及广义储能的建筑产消者社区综合能源系统日前调度优化[J]. 综合智慧能源, 2025, 47(7): 82-92. |
| [15] | 王成, 邵冲, 何欣, 董海鹰. 基于MOIBKA算法的电化学储能电站最优功率分配[J]. 综合智慧能源, 2025, 47(6): 74-84. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||

