Huadian Technology ›› 2021, Vol. 43 ›› Issue (7): 17-23.doi: 10.3969/j.issn.1674-1951.2021.07.003
• Energy Storage System • Previous Articles Next Articles
TONG Jialin1(), HONG Qing2, LYU Hongkun1, WU Ruikang1, YING Guangyao1
Received:
2021-04-27
Revised:
2021-05-14
Published:
2021-07-25
CLC Number:
TONG Jialin, HONG Qing, LYU Hongkun, WU Ruikang, YING Guangyao. Development status and application prospect of power side energy storage technology[J]. Huadian Technology, 2021, 43(7): 17-23.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.07.003
Tab.1
Some in-service frequency modulation projects combined thermal power generation and power storage
电厂名称 | 储能系统容量 | 电池类型 | 投运时间 |
---|---|---|---|
北京石景山热电厂 | 2 MW/0.500 MW·h | 磷酸铁锂 | 2014年 |
山西京玉电厂 | 9 MW/4.500 MW·h | 锰酸锂 | 2015年 |
山西阳光电厂 | 9 MW/4.500 MW·h | 三元锂 | 2017年 |
山西同达电厂 | 9 MW/4.478 MW·h | 磷酸铁锂 | 2017年 |
内蒙古杭锦电厂 | 9 MW/4.500 MW·h | 三元锂 | 2018年 |
内蒙古上都电厂 | 18 MW/8.957 MW·h | 磷酸铁锂 | 2018年 |
广东海丰电厂 | 30 MW/15.000 MW·h | 磷酸铁锂 | 2019年 |
湖南桥口电厂 | 18 MW/9.000 MW·h | 磷酸铁锂 | 2020年 |
江西新昌电厂 | 9 MW/18.000 MW·h | 磷酸铁锂 | 2020年 |
[1] | 薛立林. 中国宣布碳排放达峰与碳中和目标推动能源革命与企业转型[J]. 国际石油经济, 2021, 29(1):48-50. |
[2] | 胡建根, 童家麟, 茅建波, 等. 典型燃煤锅炉深度调峰能力比较研究[J]. 锅炉技术, 2019, 50(6):59-64. |
HU Jiangen, TONG Jialin, MAO Jianbo, et al. The research of the comparison of deep peak regulation capacity for typical coal-fired boilers[J]. Boiler Technology, 2019, 50(6):59-64. | |
[3] | 丛星亮, 谢红, 苏阳, 等. 660 MW超超临界二次再热机组深度调峰试验研究[J]. 华电技术, 2021, 43(5):64-69. |
CONG Xingliang, XIE Hong, SU Yang, et al. Experimental study on deep peak-load shaving of a 660 MW ultra-supercritical secondary reheating unit[J]. Huadian Technology, 2021, 43(5):64-69. | |
[4] | 孙立本, 张少成, 许冰, 等. 66 kV固体电蓄热装置在火电机组深度调峰中的应用[J]. 华电技术, 2018, 40(7):38-39,42. |
SUN Liben, ZHANG Shaocheng, XU Bing, et al. Application of 66 kV solid electric heat storage device in vigorous peak-load regulation of thermal power units[J]. Huadian Technology, 2018, 40(7):38-39,42. | |
[5] | 张东辉, 徐文辉, 门锟, 等. 储能技术应用场景和及发展关键问题[J]. 南方能源建设, 2019, 6(3):1-5. |
ZHANG Donghui, XU Wenhui, MEN Kun, et al. Application scenarios of energy storage and its key issues in development[J]. Southern Energy Construction, 2019, 6(3):1-5. | |
[6] | 黄博文. 储能应用领域与场景综述[J]. 大众用电, 2020, 35(10):19-20. |
[7] | 王冰, 王楠, 田政, 等. 美国电化学储能产业政策分析及对我国储能产业发展的启示与建议[J]. 分布式能源, 2020, 5(3):23-28. |
WANG Bin, WANG Nan, TIAN Zheng, et al. Policy analysis of electrochemical energy storage industry in United States and its enlightenment and suggestion for development of China's energy storage industry[J]. Distributed Energy, 2020, 5(3):23-28. | |
[8] | 孙玉树, 杨敏, 师长立, 等. 储能的应用现状和发展趋势分析[J]. 高电压技术, 2020, 46(1):80-89. |
SUN Yushu, YANG Min, SHI Changli, et al. Analysis of application status and development trend of energy storage[J]. High Voltage Engineering, 2020, 46(1):80-89. | |
[9] | 周喜超. 电力储能技术发展现状及走向分析[J]. 热力发电, 2020, 49(8):7-12. |
ZHOU Xichao. Development status and trend analysis of electric energy storage technology[J]. Thermal Power Generation, 2020, 49(8):7-12. | |
[10] | CHAIBI Y, ALLOUHI A, SALHI M, et al. Annual performance analysis of different maximum power point tracking techniques used in photovoltaic systems[J/OL]. Protection and Control of Modern Power System. [2021-04-06]. https://doi.org/10.1186/s41601-019-0129-1. |
[11] | 刘英军, 刘畅, 王伟, 等. 储能发展现状与趋势分析[J]. 中外能源, 2017, 22(4):80-88. |
LIU Yingjun, LIU Chang, WANG Wei, et al. Analysis of development status and trend of energy storage technology[J]. Sino-Global Energy, 2017, 22(4):80-88. | |
[12] | 罗振军, 田永利, 黄磊, 等. 利用海洋深度落差的重力储能系统:中国,CN201410111241.3[P]. 2014-06-18. |
[13] | 郭松林, 孙博洋, 姚峣, 等. 储能技术及其在新能源并网系统中的典型应用[J]. 工业控制计算机, 2020, 33(11):142-148. |
GUO Songlin, SUN Boyang, YAO Yao, et al. Energy storage technology and its typical application in new energy grid connection system[J]. Industrial Control Computer, 2020, 33(11):142-148. | |
[14] | 陈中飞, 荆朝霞, 陈达鹏, 等. 美国调频辅助服务市场的定价机制分析[J]. 电力系统自动化, 2018, 42(12):1-10. |
CHEN Zhongfei, JING Zhaoxia, CHEN Dapeng, et al. Analysis of pricing mechanism in frequency regulation ancillary service market of United States[J]. Automation of Electric Power Systems, 2018, 42(12):1-10. | |
[15] | 陈启鑫, 房曦晨, 郭鸿业, 等. 电力现货市场建设进展与关键问题[J]. 电力系统自动化, 2021, 45(6):3-15. |
CHEN Qixin, FANG Xichen, GUO Hongye, et al. Progress and key issues for construction of electricity spot market[J]. Automation of Electric Power Systems, 2021, 45(6):3-15. | |
[16] | 谢惠藩, 王超, 刘湃泓, 等. 南方电网火电储能联合调频技术应用[J]. 电力系统自动化, 2021, 45(4):172-179. |
XIE Huifan, WANG Chao, LIU Paihong, et al. Application of joint frequency regulation technology of energy storage and thermal power in China southern power gird[J]. Automation of Electric Power Systems, 2021, 45(4):172-179. | |
[17] | 王金星, 张少强, 张瀚文, 等. 燃煤电厂调峰调频储能技术的研究进展[J]. 华电技术, 2020, 42(4):64-71. |
WANG Jinxing, ZHANG Shaoqiang, ZHANG Hanwen, et al. Progress on the peak load regulation,frequency regulation and energy storage technologies for coal-fired power plants[J]. Boiler Technology, 2020, 42(4):64-71. | |
[18] | 于国强, 崔晓波, 史毅越, 等. 基于改进群优化算法的深度调峰机组一次调频建模[J]. 中国电力, 2020, 53(6):147-152. |
YU Guoqiang, CUI Xiaobo, SHI Yiyue, et al. Primary frequency regulation modeling of deep park regulation unit based on improved group optimization algorithm[J]. Electric Power, 2020, 53(6):147-152. | |
[19] | 薛飞宇, 梁双印. 飞轮储能核心技术发展现状与展望[J]. 节能, 2020, 39(11):119-122. |
XUE Feiyu, LIANG Shuangyin. Development status and prospect of core technology of flywheel energy storage system[J]. Energy Conservation, 2020, 39(11):119-122. | |
[20] | 马成龙, 隋云任. 飞轮储能系统辅助调频的参数配置和经济性分析[J]. 节能, 2020, 39(10):25-29. |
MA Chenglong, SUI Yunren. Parameter configuration and economic analysis of auxiliary frequency modulation of flywheel energy storage system[J]. Energy Conservation, 2020, 39(10):25-29. | |
[21] | 刘文毅, 杨勇平, 张昔国, 等. 压缩空气蓄能(CAES)电站及其现状和发展趋势[J]. 山东电力技术, 2007(2):10-14. |
LIU Wenyi, YANG Yongping, ZHANG Xiguo, et al. Present situation and development trend of compressed air energy storage(CAES) power plant[J]. Shandong Electric Power, 2007(2):10-14. | |
[22] | 何志瞧, 童家麟. 太阳能光热发电技术现状及超临界CO2光热发电技术应用前景[J]. 华电技术, 2020, 42(4):77-83. |
HE Zhiqiao, TONG Jialin. Development status of solar thermal power generation and prospect of supercritical carbon dioxide technology applied in it[J]. Huadian Technology, 2020, 42(4):77-83. | |
[23] | 徐其利, 孙杰. 用于太阳能光热发电系统的CaO/Ca(OH)2化学储热技术综述[J]. 华电技术, 2020, 42(4):1-11. |
XU Qili, SUN Jie. Review of CaO/Ca(OH)2 chemical heat storage technology for CSP [J]. Huadian Technology, 2020, 42(4):1-11. | |
[24] | 王松岑, 来小康, 程时杰, 等. 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化, 2013, 37(1):3-8,30. |
WANG Songcen, LAI Xiaokang, CHENG Shijie, et al. An anasysis of prospects for application for large-scale energy storage technology in power systems[J]. Automation of Electric Power Systems, 2013, 37(1):3-8,30. | |
[25] | 曾蓉. 山体储能技术及其与风电场联合出力的容量配置研究[D]. 长沙:长沙理工大学, 2016. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[3] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[4] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[5] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[6] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[7] | MENG Qiang, TIAN Xi, XIONG Yaxuan. Study on preparation of shape-stable phase-change materials based on cellular concrete and their performances [J]. Integrated Intelligent Energy, 2024, 46(3): 29-34. |
[8] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[9] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[10] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[11] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[12] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[13] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[14] | ZHANG Zhongping, LIU Heng, XIE Yurong, ZHAO Dazhou, MOU Min, CHEN Qiao. Application and research progress of molten salt heat storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 40-47. |
[15] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||