Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (8): 75-85.doi: 10.3969/j.issn.2097-0706.2022.08.008
• Cell System with Proton Conducting Electrolyte • Previous Articles Next Articles
CHEN Hanyu1(), ZHOU Xiaoliang1,2,*(
), LIU Limin1, QIAN Xinyuan1, WANG Zhou1, HE Feifan1, SHENG Yang1
Received:
2022-07-23
Revised:
2022-08-05
Published:
2022-08-25
Contact:
ZHOU Xiaoliang
E-mail:1035695998@qq.com;xlzhou_swpu@sina.com
CLC Number:
CHEN Hanyu, ZHOU Xiaoliang, LIU Limin, QIAN Xinyuan, WANG Zhou, HE Feifan, SHENG Yang. Research progress of hydrogen production from water electrolysis in proton-conducting solid electrolytic cells[J]. Integrated Intelligent Energy, 2022, 44(8): 75-85.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.08.008
Table 1
Main characteristics of different electrolysis technologies[37]
项目 | 碱性电解 | 质子交换电解 | 氧离子传导电解 | |||
---|---|---|---|---|---|---|
液体 | 聚合物电解质膜 | 固体氧化物电解(SOE) | ||||
电荷载体 | OH- | OH- | H+ | H+ | O2- | O2- |
工作温度/℃ | 20~80 | 20~200 | 20~200 | 500~1 000 | 500~1 000 | 750~900 |
电解质 | 液体 | 固体 | 固体 | 固体 | 固体 | 固体 |
OER | 4OH-→2H2O+ O2+4e- | 4OH-→2H2O+O2+4e- | 2H2O→4H++O2+4e- | 2H2O→4H++O2+4e- | O2-→ | O2-→ |
阳极材料 | Ni>Co>Fe (氧化物) | 镍基 | IrO2,RuO2,IrxRu1-xO2, | 具有质子电子导电性的钙钛矿 | LaxSr1-xMnO3+Y-ZrO2(LSM-YSZ) | LaxSr1-xMnO3+Y-ZrO2(LSM-YSZ) |
HER | 2H2O+4e-→4OH_+2H2 | 2H2O+4e-→ 4OH-+2H2 | 4H++4e-→2H2 | 4H++4e-→2H2 | H2O+2e-→H2+O2- | H2O+2e-→H2+O2- |
阴极材料 | 镍合金 | Ni,Ni-Fe,NiFe2O4 | Pt/C MoS2 | 镍金属陶瓷 | Ni-YSZ | Ni-YSZ钙钛矿 |
效率/% | 59~70 | — | 65~82 | 100 | 100 | — |
适用性 | 商业化 | 实验室规模 | 近商业化 | 实验室规模 | 实验室规模 | 实验室规模 |
优势 | 成本低,相对稳定,技术成熟 | 碱性和H+-PEM电解的组合 | 紧凑设计、启动快速、高纯度H2 | 增强反应动力学、热力学;更低的能源需求,更低的资本成本 | 合成气直接生产 | |
劣势 | 腐蚀电解液、气体渗透、慢动力学 | 聚合物膜中的OH-电导率低 | 高成本聚合物膜 | 安全问题,电极机械性能不稳定(开裂);密封问题 | ||
挑战 | 提高可靠性和氧分解 | 改善电解液 | 减少贵金属利用 | 电极的微观结构变化;分层、TPB堵塞、 钝化 | 碳沉积、电极的微结构变化 |
[1] | 徐硕, 余碧莹. 中国氢能技术发展现状与未来展望[J]. 北京理工大学学报, 2021, 23(6):12-21. |
XU Shuo, YU Biying. Development status and future prospect of hydrogen energy technology in China[J]. Journal of Beijing University of Technology, 2021, 23(6):12-21. | |
[2] | 马天增, 付铭凯, 任婷, 等. 基于金属氧化物的两步法太阳能热化学循环制备燃料研究现状与展望[J]. 华电技术, 2021, 43(11): 110-127. |
MA Tianzeng, FU Mingkai, REN Ting, et al. Review and prospects of two-step solar thermochemical cycle for preparing fuels based on metal oxides[J]. Huadian Technology, 2021, 43(11): 110-127. | |
[3] | BI L, BOULFRAD S, TRAVERSA E. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides[J]. Chemical Society Reviews, 2015, 46(8):8255-8270. |
[4] | 张文强, 于波, 陈靖, 等. 高温固体氧化物电解水制氢技术[J]. 化学进展, 2008, 20(5):778-787. |
ZHANG Wenqiang, YU Bo, CHEN Jing, et al. Hydrogen production through solid oxide electrolysis at elevated temperatures[J]. Progress in Chemistry, 2008, 20(5):778-787. | |
[5] |
赵晨欢, 张文强, 于波, 等. 固体氧化物电解池[J]. 化学进展, 2016, 28(8):1265-1288.
doi: 10.7536/PC151105 |
ZHAO Chenhuan, ZHANG Wenqiang, YU Bo, et al. Solid oxide electrolysis cells[J]. Progress in Chemistry, 2016, 28(8):1268-1288. | |
[6] |
张一民, 康建立, 赵乃勤. 过渡金属基电解水催化剂的发展现状及展望[J]. 综合智慧能源, 2022, 44(5): 15-29.
doi: 10.3969/j.issn.2097-0706.2022.05.002 |
ZHANG Yimin, KANG Jianli, ZHAO Naiqin. Development and perspectives of the transition metal-based catalysts for water splitting[J]. Integrated Intelligent Energy, 2022, 44(5): 15-29.
doi: 10.3969/j.issn.2097-0706.2022.05.002 |
|
[7] | 练文超, 雷励斌, 梁波, 等. 质子导体固体氧化物电化学装置中氨的利用与合成[J]. 储能科学与技术, 2021, 10(6):10-18. |
LIAN Wenchao, LEI Libin, LIANG Bo, et al. Utilization and synthesis of ammonia in proton conductor solid oxide electrochemical device[J]. Energy Storage Science and Technology, 2021, 10(6):10-18. | |
[8] |
KIM J, JUN A, GWON O, et al. Hybrid-solid oxide electrolysis cell: A new strategy for efficient hydrogen production[J]. Nano Energy, 2018, 44(6):121-126.
doi: 10.1016/j.nanoen.2017.11.074 |
[9] | LEI L, ZHANG J, YUAN Z, et al. Progress report on proton conducting solid oxide electrolysis cells[J]. Advanced Functional Materials, 2019, 29(37):1-17. |
[10] | IWAHARA H, ESAKA T, UCHIDA H, et al. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production[J]. Solid State Ionics, 1981, 3(1):359-363. |
[11] | IWAHARA H. High temperature proton conducting oxides and their applications to solid electrolyte fuel cells and steam electrolyzer for hydrogen production[J]. Solid State Ionics, 1988, 28(30):573-578. |
[12] | SHIN S, HUANG H H, ISHIGAME M, et al. Protonic conduction in the single-crystals of SrZrO3 and SrCeO3 doped with Y2O3[J]. Solid State Ionics, 1990, 40(2):910-913. |
[13] | IWAHARA H, UCHIDA H, ONO K, et al. Proton conduction in sintered oxides based on BaCeO3[J]. ChemInform, 1988, 19(23):529-533. |
[14] | IWAHARA H, YAJIMA T, HIBINO T, et al. Protonic conduction in calcium,strontium and barium zirconates[J]. Journal of Cell Science, 1993, 118(24):43-54. |
[15] | 施万玉, 卢建树. 质子导体材料的研究进展[J]. 化工新型材料, 2010, 38(4):6-9. |
SHI Wanyu, LU Jianshu. Research progress of proton conductor materials[J]. New Chemical Materials, 2010, 38(4):6-9. | |
[16] |
MALAVASI L, FISHER C A J, ISLAM M S. Oxide-ion and proton conducting electrolyte materials for clean energy applications: Structural and mechanistic features[J]. Chemical Society Reviews, 2010, 39(11):4370-4387.
doi: 10.1039/b915141a |
[17] |
STUART P A, UNNO T, KILNER J A, et al. Solid oxide proton conducting steam electrolysers[J]. Solid State Ionics, 2008, 179(26):1120-1124.
doi: 10.1016/j.ssi.2008.01.067 |
[18] |
MATHER G C, MUÑOZ-GIL D, ZAMUDIO-GARCÍA J, et al. Perspectives on cathodes for protonic ceramic fuel cells[J]. Applied Sciences, 2021, 11(12):53-63.
doi: 10.3390/app11010053 |
[19] | CHEN J, YANG M, XU M, et al. Realizing simultaneous detrimental reactions suppression and multiple benefits generation from nickel doping toward improved protonic ceramic fuel cell performance[J]. Small, 2022, 18(6):40-50. |
[20] |
AZIMOVA M A, MCINTOSH S. Transport properties and stability of cobalt doped proton conducting oxides[J]. Solid State Ionics, 2009, 180(2):160-167.
doi: 10.1016/j.ssi.2008.12.013 |
[21] |
WANG S, ZHANG L, YANG Z, et al. Two-step co-sintering method to fabricate anode-supported Ba3Ca1.18Nb1.82O9-δ proton-conducting solid oxide fuel cells[J]. Journal of Power Sources, 2012, 215(1):221-226.
doi: 10.1016/j.jpowsour.2012.05.009 |
[22] | LIU M, GAO J, LIU X, et al. High performance of anode supported BaZr0.1Ce0.7Y0.2O3-δ(BZCY) electrolyte cell for IT-SOFC[J]. International Journal of Hydrogen Energy, 2011, 21(34):41-45. |
[23] |
SLODCZYK A, SHARP M D, UPASEN S, et al. Combined bulk and surface analysis of the BaCe0.5Zr0.3Y0.16Zn0.04O3-δ(BCZYZn) ceramic proton-conducting electrolyte[J]. Solid State Ionics, 2014, 262(2).DOI: 10.1016/j.ssi.2013.12.044.
doi: 10.1016/j.ssi.2013.12.044 |
[24] | AZIMOVA M A, MCINTOSH S. Properties and performance of anode-supported proton-conducting BaCe0.48Zr0.4Yb0.1Co0.02O3-δ solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2010, 157(10):1397-1343. |
[25] |
SONG Y, CHEN Y, WANG W, et al. Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode[J]. Joule, 2019, 3(11): 2842-2853.
doi: 10.1016/j.joule.2019.07.004 |
[26] | YAN L, SUN W, LEI B, et al. Influence of fabrication process of Ni-BaCe0.7Zr0.1Y0.2O3-δ cermet on the hydrogen permeation performance[J]. Journal of Alloys & Compounds, 2010, 508(1):5-8. |
[27] |
MATSUMOTO H, SAKAI T, OKUYAMA Y. Proton-conducting oxide and applications to hydrogen energy devices[J]. Pure and Applied Chemistry, 2012, 85(2):427-435.
doi: 10.1351/PAC-CON-12-07-11 |
[28] |
AZIMOVA M A, MCINTOSH S. On the reversibility of anode supported proton conducting solid oxide cells[J]. Solid State Ionics, 2011, 203(1):57-61.
doi: 10.1016/j.ssi.2011.09.008 |
[29] | GUI L, WANG R, WANG Z, et al. A comparison of oxygen permeation and CO2tolerance of La0.6Sr0.4Co0.2Fe0.6Nb0.2O3-δ and La0.6Sr0.4Fe0.8Nb0.2O3-δ ceramic membranes[J]. Journal of Alloys and Compounds, 2015, 72(5):788-792. |
[30] | LIU P, LUO Z, KONG J, et al. Ba0.5Sr0.5Co0.8Fe0.2O3-δ-based dual-gradient cathodes for solid oxide fuel cells[J]. Ceramics International, 2018, 4(44):4516-4519. |
[31] |
KOLOTYGIN V A, TSIPIS E V, PATRIKEEV M V, et al. Stability, mixed conductivity, and thermomechanical properties of perovskite materials for fuel cell electrodes based on La0.5A0.5Mn0.5Ti0.5O3-δ, La0.5Ba0.5Ti0.5Fe0.5O3-δ,and (La0.5А0.5)0.95Cr0.5Fe0.5O3-δ(A=Ca,Ba)[J]. Russian Journal of Electrochemistry, 2016, 52(7):628-641.
doi: 10.1134/S1023193516070089 |
[32] | VØLLESTAD E, STRANDBAKKE R, WRAGG D, et al. Tailoring the properties of a-site substituted Ba1-xGd0.8La0.2+xCo2O6-δ[J]. Journal of Materials Chemistry A, 2016, 20(6):451-462. |
[33] |
DANILOV N, LYAGAEVAA J, VDOVIN G, et al. Multifactor performance analysis of reversible solid oxide cells based on proton-conducting electrolytes[J]. Applied Energy, 2019, 237(1):924-934.
doi: 10.1016/j.apenergy.2019.01.054 |
[34] | DANILOV N, TARUTIN A, LYAGAEVA J, et al. CO2-promoted hydrogen production in a protonic ceramic electrolysis cell[J]. Journal of Materials Chemistry A, 2018, 6(2):201-208. |
[35] | GRIMAUD A, MAUVY F, BASSAT J M, et al. Hydration and transport properties of the Pr2-xSrxNiO4+δ compounds as H+-SOFC cathodes[J]. Journal of Materials Chemistry, 2012, 3(22):432-436. |
[36] |
HUANG J, MA Y, MING C, et al. Fabrication of integrated BZY electrolyte matrices for protonic ceramic membrane fuel cells by tape-casting and solid-state reactive sintering[J]. International Journal of Hydrogen Energy, 2018, 43(28):12835-12846.
doi: 10.1016/j.ijhydene.2018.04.148 |
[37] |
LI M, CHEN K, HUA B, et al. Smart utilization of cobaltite-based double perovskite cathodes on barrier-layer-free zirconia electrolyte of solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2016, 4(48):19019-19025.
doi: 10.1039/C6TA08396J |
[38] |
CHOI S, KUCHARCZYK C J, LIANG Y, et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells[J]. Nature Energy, 2018, 3(3):202-210.
doi: 10.1038/s41560-017-0085-9 |
[39] |
BIAN W, WU W, WANG B, et al. Revitalizing interface in protonic ceramic cells by acid etch[J]. Nature, 2022, 604(7906): 479-485.
doi: 10.1038/s41586-022-04457-y |
[40] |
BI L, FABBRI E, TRAVERSA E, et al. Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs)[J]. Electrochemistry Communications, 2012, 16(1):37-40.
doi: 10.1016/j.elecom.2011.12.023 |
[41] | 刘明义, 于波, 徐景明. 固体氧化物电解水制氢系统效率[J]. 清华大学学报, 2009(6):4-11. |
LIU Mingyi, YU Bo, XU Jingming. Efficiency of solid oxide electrolyzed water hydrogen production system[J]. Journal of Tsinghua University, 2009(6):4-11. | |
[42] | 张文强, 于波, 陈靖, 等. 高温固体氧化物电解水制氢技术[J]. 化学进展, 2008, 20(5):10-18. |
ZHANG Wenqiang, YU Bo, CHEN Jing, et al. High temperature solid oxide electrolysis water hydrogen production technology[J]. Progress in Chemistry, 2008, 20(5):10-18. | |
[43] |
VOLLESTAD E, STRANDBAKKE R, TARACH M, et al. Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers[J]. Nature Materials, 2019, 18(7):752-759.
doi: 10.1038/s41563-019-0388-2 |
[44] |
ZHANG J, LEI L, LIU D, et al. Mathematical modeling of a proton-conducting solid oxide fuel cell with current leakage[J]. Journal of Power Sources, 2018, 400(17):333-340.
doi: 10.1016/j.jpowsour.2018.08.038 |
[45] |
HUAN D, WANG W, XIE Y, et al. Investigation of real polarization resistance for electrode performance in proton-conducting electrolysis cells[J]. Journal of Materials Chemistry A, 2018, 6(38):18508-18517.
doi: 10.1039/C8TA06862C |
[46] |
LIU M, BO Y, XU J, et al. Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production[J]. Journal of Power Sources, 2008, 177(2):493-499.
doi: 10.1016/j.jpowsour.2007.11.019 |
[47] | 张玉魁, 张晨佳, 孙振新, 等. 高温固体氧化物电解制氢模拟研究进展[J]. 化工进展, 2021, 40(1):16-25. |
ZHANG Yukui, ZHANG Chenjia, SUN Zhenxin, et al. Research progress on simulation of hydrogen production by high temperature solid oxide electrolysis[J]. Progress in Chemistry, 2021, 40(1):16-25. | |
[48] |
张立栋, 陈怡冰, 龚明, 等. 质子交换膜电解水制氢影响因素的过程模拟[J]. 综合智慧能源, 2022, 44(5): 88-94.
doi: 10.3969/j.issn.2097-0706.2022.05.010 |
ZHANG Lidong, CHEN Yibing, GONG Ming, et al. Process simulation of factors affecting proton exchange membrane water electrolysis for hydrogen production[J]. Integrated Intelligent Energy, 2022, 44(5): 88-94.
doi: 10.3969/j.issn.2097-0706.2022.05.010 |
|
[49] | ZHU H, RICOTE S, DUAN C, et al. Defect chemistry and transport within dense BaCe0.7Zr0.1Y0.1Yb0.1O3-δ(BCZYYb) proton-conducting membranes[J]. Journal of The Electrochemical Society, 2018, 165(10):845-853. |
[50] |
JENNINGS D M, KARAKAYA C, ZHU H, et al. Measurement and characterization of a high-temperature, coke-resistant bi-functional Ni/BZY15 water-gas-shift catalyst under steam-reforming conditions[J]. Catalysis Letters, 2018, 148(12): 3592-3607.
doi: 10.1007/s10562-018-2553-7 |
[51] |
LE L Q, HERNANDEZ C H, RODRIGUEZ M H, et al. Proton-conducting ceramic fuel cells:Scale up and stack integration[J]. Journal of Power Sources, 2021, 482(1):228868.
doi: 10.1016/j.jpowsour.2020.228868 |
[52] |
GROSS S, MARGARITIS N, HAART U D, et al. Interaction of a barium‐calcium‐silicate glass composite sealant with sanergy HT 441[J]. Fuel Cells, 2019, 19(4):494-502.
doi: 10.1002/fuce.201800191 |
[53] |
SOMEKAWA T, MATSUZAKI Y, SUGAHARA M, et al. Physicochemical properties of Ba(Zr,Ce)O3-δ-based proton-conducting electrolytes for solid oxide fuel cells in terms of chemical stability and electrochemical performance[J]. International Journal of Hydrogen Energy, 2017, 42(26):16722-16730.
doi: 10.1016/j.ijhydene.2017.04.267 |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | WANG Zening, LI Wenzhong, LI Donghui, XU Taishan, YU Jun. Construction of the hierarchical autonomous power balance model for software-defined new power systems [J]. Integrated Intelligent Energy, 2024, 46(7): 1-11. |
[3] | YIN Linfei, MENG Yujie. Short-term wind power forecasting based on DenseNet convolutional neural networks [J]. Integrated Intelligent Energy, 2024, 46(7): 12-20. |
[4] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. |
[5] | YANG Lei, WANG Rui, MA Lili, SUN Ning, LI Xuelian, CHEN Ting, WANG Shaorong, SHI Caixia. Research on Ca and Fe co-doped PrBaCo2O5+δ as a cathode material of solid oxide fuel cells [J]. Integrated Intelligent Energy, 2024, 46(7): 47-52. |
[6] | HUANG Xiaofan, LI Jiarui, LIU Hui, TANG Xiaoping, WANG Ziyao, WANG Tong. Comprehensive benefit analysis on the cascade utilization of a power battery system [J]. Integrated Intelligent Energy, 2024, 46(7): 63-73. |
[7] | XU Zhifan, LI Huasen, LI Wenyuan, YU Kai. State of charge prediction for lithium-ion batteries based on KF-RCMNN [J]. Integrated Intelligent Energy, 2024, 46(7): 81-86. |
[8] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[9] | WANG Lin, KONG Xiaomin, ZHOU Zhongyu, LIU Jianping, WANG Xiaodong, ZHANG Ning. Distributed photovoltaic-energy storage reactive power optimization method for distribution networks under cloud energy storage mode [J]. Integrated Intelligent Energy, 2024, 46(6): 44-53. |
[10] | ZHANG Xunxiang, WU Jiekang, SUN Yehua, PENG Qijian. Capacity allocation optimization of hybrid energy storage systems considering fluctuation control on offshore wind power [J]. Integrated Intelligent Energy, 2024, 46(6): 54-65. |
[11] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[12] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[13] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[14] | SU Panpan, WANG Xuetao, XING Lili, LI Haojie, LIU Mengjie. Research progress on preparation of liquid fuels by catalytic pyrolysis of pretreated biomass [J]. Integrated Intelligent Energy, 2024, 46(3): 1-11. |
[15] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||