Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (10): 57-64.doi: 10.3969/j.issn.2097-0706.2022.10.008
• Optimal Operation and Control • Previous Articles Next Articles
SHI Gengjin(), LI Donghai(
), DING Yanjun
Received:
2022-06-01
Revised:
2022-07-16
Published:
2022-10-25
Contact:
LI Donghai
E-mail:sgj18@mails.tsinghua.edu.cn;lidongh@tsinghua.edu.cn
CLC Number:
SHI Gengjin, LI Donghai, DING Yanjun. Design of a hybrid active disturbance rejection control based on probabilistic robustness[J]. Integrated Intelligent Energy, 2022, 44(10): 57-64.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.10.008
[1] | 吴振龙. 热力系统鲁棒自抗扰控制研究与设计[D]. 北京: 清华大学, 2020. |
[2] |
张兴科, 魏朝阳, 王康平, 等. 面向高比例光伏并网的火电爬坡压力缓解策略[J]. 综合智慧能源, 2022, 44(1):1-8.
doi: 10.3969/j.issn.2097-0706.2022.01.001 |
ZHANG Xingke, WEI Chaoyang, WANG Kangping, et al. Strategies for relieving ramp pressure of thermal power units with high-proportion photovoltaic power connecting to the grid[J]. Integrated Intelligent Energy, 2022, 44(1): 1-8.
doi: 10.3969/j.issn.2097-0706.2022.01.001 |
|
[3] | MAZALAN N A, MALEK A A, WAHID M A, et al. Review of control strategies employing neural network for main steam temperature control in thermal power plant[J]. Jurnal Teknologi, 2012, 66(2): 73-76. |
[4] | 金以慧. 过程控制[M]. 北京: 清华大学出版社, 1993. |
[5] | 荆立坤, 唐宜强, 潘凤萍, 等. 基于鲁棒约束的PI控制器参数多目标优化及应用[J]. 华电技术, 2021, 43(5): 1-8. |
JING Likun, TANG Yiqiang, PAN Fengping, et al. Multi-objective optimization of PI controller parameters under robustness constraint and its application[J]. Huadian Technology, 2021, 43(5): 1-8. | |
[6] |
曹子飞, 杨栋, 吴茂坤, 等. 控制器参数对AGC调节性能的影响[J]. 综合智慧能源, 2022, 44(4): 36-42.
doi: 10.3969/j.issn.2097-0706.2022.04.005 |
CAO Zifeng, YANG Dong, WU Maokun, et al. Influence of controller parameters on AGC regulation performance[J]. Integrated Intelligent Energy, 2022, 44(4): 36-42.
doi: 10.3969/j.issn.2097-0706.2022.04.005 |
|
[7] |
WU X, SHEN J, LI Y G, et al. Fuzzy modeling and predictive control of superheater steam temperature for power plant[J]. ISA Transactions, 2015, 56: 241-251.
doi: 10.1016/j.isatra.2014.11.018 pmid: 25530258 |
[8] | MA L, LEE K Y. Neural network based superheater steam temperature control for a large-scale supercritical boiler unit[C]// 2011 IEEE Power and Energy Society General Meeting. IEEE, 2011: 1-8. |
[9] | SHOME A, ASHOK S D. Fuzzy logic approach for boiler temperature & water level control[J]. International Journal of Scientific & Engineering Research, 2012, 3(6):1-6. |
[10] | WU Z, LI D, WANG L. Control of the superheated steam temperature:A comparison study between PID and fractional order PID controller[C]// 2016 35th Chinese Control Conference (CCC). IEEE, 2016: 10521-10526. |
[11] | 韩京清. 自抗扰控制技术——估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008. |
[12] |
HAN J. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56: 900-906.
doi: 10.1109/TIE.2008.2011621 |
[13] | GAO Z. Scaling and bandwidth-parameterization based controller tuning[C]// American Control Conference.IEEE, 2003: 4989-4996. |
[14] |
WU Z, LI D, XUE Y, et al. Modified active disturbance rejection control for fluidized bed combustor[J]. ISA Transactions, 2020, 102: 135-153.
doi: S0019-0578(20)30111-7 pmid: 32183992 |
[15] |
SHI G, WU Z, HE T, et al. Decentralized active disturbance rejection control design for the gas turbine[J]. Measurement and Control, 2020, 53(9-10): 1589-1601.
doi: 10.1177/0020294020947130 |
[16] |
SHI G, WU Z, HE T, et al. Shaft speed control of the gas turbine based on active disturbance rejection control[J]. IFAC-PapersOnLine, 2020, 53(2): 12523-12529.
doi: 10.1016/j.ifacol.2020.12.1795 |
[17] |
HUANG C, LI D, XUE Y. Active disturbance rejection control for the ALSTOM gasifier benchmark problem[J]. Control Engineering Practice, 2013, 21: 556-564.
doi: 10.1016/j.conengprac.2012.11.014 |
[18] |
王佑, 吴振龙, 薛亚丽, 等. 高阶大惯性系统的线性自抗扰控制器设计[J/OL]. 控制与决策, 2022. DOI: 10.13195/j.kzyjc.2021.1576.
doi: 10.13195/j.kzyjc.2021.1576 |
WANG You, WU Zhenlong, XUE Yali, et al. Design of linear active disturbance rejection controller for high order large inertia system[J]. Control and Decision, 2022. DOI: 10.13195/j.kzyjc.2021.1576.
doi: 10.13195/j.kzyjc.2021.1576 |
|
[19] |
WU Z, HE T, LI D, et al. Superheated steam temperature control based on modified active disturbance rejection control[J]. Control Engineering Practice, 2019, 83: 83-97.
doi: 10.1016/j.conengprac.2018.09.027 |
[20] |
SHI G, WU Z, GUO J, et al. Superheated steam temperature control based on a hybrid active disturbance rejection control[J]. Energies, 2020, 13(7):1757.
doi: 10.3390/en13071757 |
[21] |
WANG C, LI D, LI Z, et al. Optimization of controllers for gas turbine based on probabilistic robustness[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(5): 054502.
doi: 10.1115/1.2981174 |
[22] |
WU Z, LI D, CHEN Y. Active disturbance rejection control design based on probabilistic robustness for uncertain systems[J]. Industrial & Engineering Chemistry Research, 2020, 59(40): 18070-18087.
doi: 10.1021/acs.iecr.0c03248 |
[23] | SHI G, LI D, DING Y, et al. Desired dynamic equational proportional-integral-derivative controller design based on probabilistic robustness[J]. International Journal of Robust and Nonlinear Control, 2021: 1-37. |
[24] |
SUN L, HUA Q, SHEN J, et al. Multi-objective optimization for advanced superheater steam temperature control in a 300 MW power plant[J]. Applied Energy, 2017, 208: 592-606.
doi: 10.1016/j.apenergy.2017.09.095 |
[25] |
HUANG Y, XUE W. Active disturbance rejection control: Methodology and theoretical analysis[J]. ISA Transactions, 2014, 53: 963-976.
doi: 10.1016/j.isatra.2014.03.003 pmid: 24742958 |
[26] | 刘京宫. 二自由度控制器的稳定域分析及其在热工过程中的应用[D]. 北京: 清华大学, 2011. |
[27] | LANZKRON R, HIGGINS T. D-decomposition analysis of automatic control systems[J]. IRE-Transactions on Automatic Control, 1959, AC-4(3): 150-171. |
[28] |
RAY L R, STENGEL R F. A Monte Carlo approach to the analysis of control system robustness[J]. Automatica, 1993, 29(1): 229-236.
doi: 10.1016/0005-1098(93)90187-X |
[29] | CHEN X, ZHOU K, ARAVENA J L. Fast universal algorithms for robustness analysis[C]// 42nd IEEE International Conference on Decision and Control. IEEE, 2003: 1926-1931. |
[30] | WU Z, ZHANG F, SHI G, et al. Frequency-domain analysis of a modified active disturbance rejection control with application to superheated steam temperature control[C]// 2019 19th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2019: 44-50. |
[1] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[2] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[3] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[4] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[5] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[6] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[7] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[8] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[9] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[10] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[11] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[12] | LI Qinggen, SUN Na, DONG Haiying. Optimal configuration for shared energy storage based on improved whale optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(9): 65-76. |
[13] | LI Pengzhen, JIA Bingke, LIU Yanhong, WU Zhenlong. Modified active disturbance rejection control on the post-combustion CO2 capture system [J]. Integrated Intelligent Energy, 2023, 45(8): 18-25. |
[14] | YANG Bo, LI Chengyun, LYU Haoxuan, ZHOU Bowen, LI Guangdi, GU Peng. Power system transient stability assessment method based on multiple STA-GLN ensemble models [J]. Integrated Intelligent Energy, 2023, 45(7): 48-60. |
[15] | LIU Yixian, WANG Yubin, YANG Qiang. High fault-tolerant distribution network state estimation method based on gated graph neural network [J]. Integrated Intelligent Energy, 2023, 45(6): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||