Huadian Technology ›› 2021, Vol. 43 ›› Issue (12): 52-59.doi: 10.3969/j.issn.1674-1951.2021.12.008
• Carbon Neutrality and Carbon Peaking System • Previous Articles Next Articles
HU Xiaolan(), SONG Wei(
), PENG Chuansheng, LI Bo, JIANG Lihong, XIAO Zhaohui, HONG Keyan
Received:
2021-10-30
Revised:
2021-11-25
Published:
2021-12-25
CLC Number:
HU Xiaolan, SONG Wei, PENG Chuansheng, LI Bo, JIANG Lihong, XIAO Zhaohui, HONG Keyan. Control and utilization of coal mine gas to achieve carbon peaking and carbon neutrality[J]. Huadian Technology, 2021, 43(12): 52-59.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.12.008
Tab.1
Controlling measurements of coal mine methane and their effects
类型 | 煤矿名称 | 区段 | 采用措施 | 实施效果 |
---|---|---|---|---|
中高瓦斯矿 | 马兰煤矿12504工作面 | 生产区 | 利用多种布孔和抽采方式实现立体抽采 | 瓦斯体积分数由0.80%下降到0.68%,整体降幅22.7% |
徐州夹河煤矿7446综采面 | 隅角 | 采用隅角埋设专用抽采管路达到回风隅角和采空区瓦斯抽采 | 回风流瓦斯体积分数由0.8%~1.2%下降到0.5%~0.7%;上隅角瓦斯体积分数由2.0%~5.0%下降到0.6%~0.8%,日产瓦斯0.15万t上升到0.26万t,瓦斯体积分数平均降幅39.6% | |
霍州煤电集团李雅庄煤矿2-616工作面 | 工作面 | 对煤层、裂隙带和上隅角实现全面抽采 | 上隅角瓦斯平均体积分数0.6%下降到0.4%,降幅33.3% | |
徐州夹河煤矿2441综采面 | 上隅角 | 重点对工作面瓦斯积聚情况采取了各种稀释措施 | 瓦斯涌出量由3.5~4.5 m3/min下降到2.5 m3/min;瓦斯体积分数由2.0%~3.0%下降到0.6%~0.7%,降幅73.3% | |
中低瓦斯矿 | 山西三元煤业2305综放面 | 生产区 | 采空区埋管抽采、顶板定向钻孔抽采 | 千米定向钻孔抽采瓦斯1个月后,瓦斯体积分数由0.85%下降到0.48%,降幅43.5% |
冀中能源股份公司葛泉矿1623工作面 | 隅角 | 工作面通风稀释、隅角负压抽采 | 运输巷瓦斯体积分数≤0.32%;隅角瓦斯体积分数≤0.42%,风筒内瓦斯体积分数≤2.30%;回风巷瓦斯体积分数≤0.26% | |
正利煤矿14-1102孤岛工作面 | 工作面 | 采空区释放+插管抽采结合,工作面钻孔抽采 | 瓦斯涌出量由1 300 m3/min上升到1 500 m3/min,瓦斯体积分数≤0.25% |
[1] | 吴宽, 施式亮. 湖南煤矿瓦斯抽采存在问题及对策探讨[J]. 矿业工程研究, 2018, 33(3):28-31. |
WU Kuan, SHI Shiliang. Problems and countermeasures of gas extraction in coal mine of Hunan province[J]. Mineral Engineering Resaerch, 2018, 33(3):28-31. | |
[2] | 曹春海. 抽采利用技术在煤矿瓦斯防治中的有效应用[J]. 当代化工研究, 2021(10):89-90. |
CAO Chunhai. Effective application of extraction and utilization technology in coal mine gas[J]. Modern Chemical Research, 2021(10):89-90. | |
[3] | 张立宽 浅谈开发利用煤层气的现实意义[J]. 中国矿业报, 2019-12-23(6). |
[4] | 袁亮. 深部煤与瓦斯共采研究新进展[C]// 国家煤矿安全监察局、中国煤炭工业协会,全国煤矿瓦斯抽采利用与通风安全技术现场会资料汇编, 2013: 43. |
[5] | 袁亮, 郭华, 沈宝堂, 等. 低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J]. 煤炭学报, 2011, 36(3):357-365. |
YUAN Liang, GUO Hua, SHEN Baotang, et al. Circular overlying zone at longwall panel for efficient methane capture of mutiple coal seams with low permeability[J]. Journal of China Coal Society, 2011, 36(3):357-365. | |
[6] | 袁亮, 薛俊华. 中国煤矿瓦斯治理理论与技术[C]// 煤炭工业可持续发展专题研讨会论文集, 2010: 14. |
[7] | 吴鹏飞, 李普, 尚政杰. 极低透气性构造软煤瓦斯抽采技术应用研究[J]. 能源与环保, 2021, 43(10):50-54. |
WU Pengfei, LI Pu, SHANG Zhengjie. Research on application of gas drainage technology in soft coal with very low permeability structure[J]. China Energy and Environmental Protection, 2021, 43(10):50-54. | |
[8] | 马杰, 辛承鹏, 赵军利. 综放工作面瓦斯综合抽采技术实践[J]. 山东煤炭科技, 2021, 39(10):120-122,128. |
MA Jie, XIN Chengpeng, ZHAO Junli. Practice of comprehensive gas extraction technology in fully mechanized top-coal caving face[J]. Shandong Coal Science and Technology, 2021(10):120-122,128. | |
[9] | 方文会, 廖引. 高瓦斯矿井区域瓦斯分级治理方法及其在潞安矿区的应用研究[J]. 能源与环保, 2021, 43(9):64-71. |
FANG Wenhui, LIAO Yin. Research on gas classification control method in high gas mine area and its application in Lu'an mining area[J]. China Energy and Environmental Protection, 2021, 43(9):64-71. | |
[10] | 袁亮. 我国淮河流域煤炭安全绿色开采[J]. 煤炭与化工, 2015, 38(6):1-4,16. |
YUAN Liang. Green mining in Huaihe basin of China[J]. Coal and Chemical Industry, 2015, 38(6):1-4,16. | |
[11] | 张建国, 王满, 袁淼, 等. 基于瓦斯治理-抽采-利用一体化的深部突出矿井安全绿色开发模式与示范工程[J]. 重庆大学报: 1-11[2021-08-27].http://kns.cnki.net/kcms/detail/50.1044.n.20210506.1706.002.html . |
ZHANG Jianguo, WANG Man, YUAN Miao, et al. Safe and green exploitation model and demonstration projects of deep outburst mine based on the integration of gas control, extraction and utilization. Journal of Chongqing University:1-11[2021-08-27].http://kns.cnki.net/kcms/detail/50.1044.n.20210506.1706.002.html . | |
[12] | 赵红泽, 甄选, 厉美杰. 中国露天煤矿发展现状[J]. 中国矿业, 2016, 25(6):12-15,34. |
ZHAO Hongze, ZHEN Xuan, LI Meijie. Current development situation of open-pit coal mine in China[J]. China Ming Magazine, 2016, 25(6):12-15,34. | |
[13] | 徐东耀, 刘伟, 但海均, 等. 中国煤炭生产甲烷排放现状及对策研究[J]. 绿色科技, 2015(6):170-72,175. |
XU Dongyao, LIU Wei, DAN Haijun, et al. Emission situation of methane caused by coal in china and some countermeasures[J]. Journal of Green Science and Technology, 2015(6):170-172,175. | |
[14] | 李俊虎. 我国实现煤炭资源环保开采现状分析及展望[J]. 城市地理, 2014(14):29-30. |
[15] | 蒋礼宏. 煤矿瓦斯地面抽采产业政策与技术研究报告[R]. 2020. |
[16] | 熙雯. 煤炭行业在碳达峰碳中和背景下的发展建议[EB/OL]. ( 2021-03-31)[2021-09-27]. https://www.xianjichina.com/news/details_256690.html |
[17] | 王媛. 煤层气公司:致力“双碳”目标助推绿色矿山建设[EB/OL]. ( 2021-08-27)[2021-09-27]. https://www.pinlue.com/article/2021/08/2703/3311693717259.Html |
[18] | 常书铭. 以煤层气开发利用为抓手坚决打好碳达峰碳中和这场硬仗[EB/OL].( 2021-09-04)[2021-09-27]https://www.sxjz.gov.cn/xwzx/bssz/content_379622 |
[19] | 张艳军. 煤矿开采技术理论与工艺运用研究[J]. 化工管理, 2019(29):119. |
[20] | “双碳”形式下的煤炭发展路径[EB/OL].( 2021-08-09)[2021-09-27]. https://baijiahao.baidu.com/s?id=1707614515906284188&wfr=spider&for=pc |
[22] | 郑爽. 我国煤层甲烷类温室气体排放及清单编制[J]. 中国煤炭, 2002(5):37-40. |
[23] | 2017年四川1—11月煤矿瓦斯抽采及利用统计分析[EB/OL].( 2018-01-02)[2021-09-27]. https://www.sc.gov.cn/10462/10464/10465/10574/2018/1/2/10441990.shtml |
[24] | 郑洋洋. 推动“双碳”行动落实落地[EB/OL]. ( 2019-09-09)[2021-09-27].https://m.gmw.cn/baijia/2021-09/08/1302562338.Html . |
[25] | 武晓娟, 中国工程院院士袁亮:煤矿瓦斯防治成绩来之不易[EB/OL]. ( 2021-03-20)[2021-09-27]. https://baijiahao.baidu.com/s?id=1694733669045166426&wfr=spider&for=pc |
[26] | 吴迪. 全国最大的低浓度瓦斯发电企业的低碳发展之路——访北京扬德环境科技股份有限公司纪实报道[C]// 中国工业节能与清洁生产协会专题资料汇编, 2015. |
[27] | 政府间气候变化专业委员会. IPCC第二次评估报告[R]. 1995. |
[28] | 政府间气候变化专业委员会. IPCC第四次评估报告[R]. 2007. |
[29] | 政府间气候变化专业委员会. IPCC第五次评估报告[R]. 2013. |
[30] | 任仁. 温室气体甲烷的人为源及其减排的技术措施[J]. 环境导报, 2000(4):42-43. |
REN Ren. Man-made sources of methane emissions and technologies for reducing methane emissions[J]. Environment Herald, 2000(4):42-43. | |
[31] | 张振芳, 姬长生, 王晓琳, 等. 地下开采煤矿碳排放量核算初探[J]. 矿山机械, 2012, 40(10):1-4. |
ZHANG Zhenfang, JI Changsheng, WANG Xiaolin, et al. Study on calculation of carbon emission from underground coal mining[J], Mining & Processing Equipment, 2012, 40(10):1-4. | |
[32] | 张振芳, 姬长生, 韩流, 等. 煤矿瓦斯利用的低碳与经济效益初步研究[J]. 矿山机械, 2013, 41(1):5-8. |
ZHANG Zhenfang, JI Changsheng, HAN Liu, et al. Study on low-carbon and economic benefits of colliery gas utilization[J]. Mining & Processing Equipment, 2013, 41(1):5-8. | |
[33] | 李新锁. “双碳”背景下,已探明煤层气地质储量占中国89.83%的山西煤层气正以清洁能源的姿态加速迈向国际第一方阵[EB/OL]. ( 2021-09-04)[2021-09-27]. https://baijiahao.baidu.com/s?id=1709888607653731868&wfr=spider&for=pc |
[34] | 邹才能. 碳中和背景下天然气的工业地位[R]. 2021. |
[35] | 徐长久. 高瓦斯矿井地质构造超前探测技术研究[J]. 煤矿现代化, 2021, 30(6):117-119. |
XU Changjiu. Research on advanced detection technology of geological structure in high gas mine[J]. Coal Mine Modernization, 2021, 30(6):117-119. | |
[36] | 李晓斌. 马兰矿12504综采工作面瓦斯综合治理技术应用[J], 煤, 2021, 30(7):59-61,70. |
[37] | 樊九林. 高瓦斯综采面初采期间瓦斯综合防治技术[J]. 煤炭科技, 2010(4):85-86. |
[38] | 樊九林. 高瓦斯综采工作面上隅角瓦斯治理[J]. 能源技术与管理, 2005(4):23-24. |
[39] | 宋海宾. 李雅庄矿2-616工作面瓦斯综合治理技术实践[J]. 山东煤炭科, 2021, 39(6):111-114. |
SONG Haibin. Practice of gas comprehensive control technology in the 2-616 working face of Liyazhuang Mine[J]. Shandong Coal Science and Technology, 2021, 39(6):111-114. | |
[40] | 戴丽君. 高瓦斯矿井千米定向钻孔瓦斯抽采技术[J]. 煤矿现代化, 2021, 30(4):116-118,122. |
DAI Lijun. Gas Drainage Technology of thousand-meter directional drilling in high gas mine[J]. Coal Mine Modernization, 2021, 30(4):116-118,122. | |
[41] | 邓九洲, 王信辉. 利用负压风筒处理工作面隅角瓦斯研究[J]. 中国煤炭工业, 2021(1):70-71. |
[42] | 赵富贵. 正利煤矿14-1102孤岛工作面瓦斯综合治理技术研究[J]. 山东煤炭科技, 2021, 39(6):128-130,133. |
ZHAO Fugui. Study pn gas comprehensive control technology of 14-1102 isolated island working face in Zhengli Coal Mine[J]. Shandong Coal Science and Technology, 2021, 39(6):128-130,133. | |
[43] | 袁亮. 瓦斯治理理念和煤与瓦斯共采技术[J]. 中国煤炭, 2010, 36(6):5-12. |
YUAN Liang. Concept of gas control and simultaneous extraction of coal and gas[J], Shandong Coal Science and Technology, 2010, 36(6):5-12. | |
[44] | 袁亮. 我国煤矿安全发展战略研究[J]. 中国煤炭, 2021, 47(6):1-6. |
YUAN Liang. Study on the development strategy of coal mine safety in China[J]. China Coal, 2021, 47(6):1-6. | |
[45] | 袁亮. 我国煤炭工业高质量发展面临的挑战与对策[J]. 中国煤炭, 2020, 46(1):6-12. |
YUAN Liang. Challenges and countermeasures for high quality development of China’s coal industry[J]. 2020, 46(1):6-12. | |
[46] | 尹江勇 近三年为我国增产14.4亿立方米煤层气[N]. 河南日报, 2021-11-04(4). |
[47] | 焦红霞, 王婷, 田孔社 山西:传递绿色低碳发展的中国声音[N]. 中国改革报, 2021-09-07(5). |
[48] | 《国务院办公厅关于加快煤层气(煤矿瓦斯)抽采利用的若干意见》国办发〔2006〕47号[EB/OL]. ( 2006-06-09)[2021-09-27]. http://www.gov.cn/zwgk/2006-06/19/content_314623.htm http://www.gov.cn/zwgk/2006-06/19/content_314623.htm. |
[49] | 徐凤银, 王勃, 赵欣, 等. “双碳”目标下推进中国煤层气业务高质量发展的思考与建议[J]. 中国石油勘探, 2021, 26(3):9-18. |
XU Fengyin, WANG Bo, ZHAO Xin, et al. Thoughts and suggestions on promoting high quality development of China's CBM business under the goal of "double carbon"[J]. China Petroleum Exploration, 2021, 26(3):9-18. | |
[50] | 秦雪霞. 煤层气成本计量与定价机制研究[D]. 太原:太原理工大学, 2013. |
[51] | 宋宝连. 煤炭开采企业成本控制分析[J]. 经济师, 2012(11):258-259. |
[52] | 姚美红. 综采面采空区大孔径瓦斯抽采技术应用[J]. 江西煤炭科技, 2021(4):147-149. |
YAO Meihong. Application of large aperture gas drainage technology in goaf of fully mechanized coal face[J]. Jiangxi Coal Science & Technology, 2021(4):147-149. | |
[53] | 刘东, 辛新平, 马耕. 定向多分支长钻孔治理瓦斯技术体系研究及应用[J]. 矿业安全与环保, 2021, 48(5):108-112. |
LIU Dong, XIN Xinping, MA Geng. Research and application of the technical system for gas drainage by means of directional multi-branch drilling[J]. Mining safety & Environmental Protection, 2021, 48(5):108-112. | |
[54] | 方晓蕾, 李思乾. 朱集西矿远距离突出煤层群开采瓦斯治理工程优化[J]. 能源技术与管理, 2021, 46(5):31-33. |
[55] | 李琰庆, 唐永志, 唐彬, 等. 淮南矿区煤与瓦斯共采技术的创新与发展[J]. 煤矿安全, 2020, 51(8):77-81. |
LI Yanqing, TANG Yongzhi, TANG Bin, et al. Innovation and development of coal and gas-coal mining technology in Huainan mining area[J]. Safety in Coal Mines, 2020, 51(8):77-81. | |
[56] | 李国富, 付军辉, 李超, 等, 山西重点煤矿采动区煤层气地面抽采技术及应用[J]. 煤炭科学技术, 2019, 47(12):83-89. |
LI Guofu, FU Jumhui, LI Chao, et al. Surface drainage technology and application of CBM in key mining areas of Shanxi Province[J]. Coal Science and Technology, 2019, 47(12):83-89. | |
[57] | 张亚莉, 成阳波. 河南复杂煤矿区瓦斯地面抽采技术研究[J]. 化工设计通讯, 2020, 46(9):95-96,110. |
ZHANG Yali, CHENG Tangbo. Research on gas furface fxtraction technology in Henan complex coal mining area[J]. Reasearch and Development, 2020, 46(9):95-96,110. | |
[58] | 韦雷, 杨茂茂. 高瓦斯突出基建矿井的井上下联合抽采实践[J]. 山西化工, 2021, 41(1):100-102. |
WEI Lei, YANG Maomao. The practice of joint drainage in high gas outburst capital mine[J]. Shanxi Chemical Industry, 2021, 41(1):100-102. | |
[59] | 刘忠全, 陈殿赋, 孙炳兴, 等. 高瓦斯矿井超大区域瓦斯治理技术[J]. 煤炭科学技术, 2021, 49(5):120-126. |
LIU Zhongquan, CHEN Dianfu, SUN Bingxing, et al. Gas control technology in super large area of high Gassy mine[J]. Coal Science and Technology, 2021, 49(5):120-126. | |
[60] | 周俊文. 二氧化碳驱替煤层甲烷的试验研究[J]. 能源与环保, 2019, 41(1):13-16,22. |
ZHOU Junwen. Study on test of displacement coal-bed methane by carbon dioxide[J]. China Energy and Environmental Protection, 2019, 41(1):13-16,22. | |
[61] | 周银波. 煤层瓦斯气相驱替及两相协同机制研究[D]. 北京:中国矿业大学, 2017. |
[62] | 闫亮. 煤矿风井地面瓦斯抽采技术及综合利用技术研究应用[J]. 山西冶金, 2021, 44(1):74-75,82. |
YAN Liang. Study and application of surface gas drainage technology and comprehensive utilization technology in the coal mine air well[J]. Shanxi Metallurgy, 2021, 44(1):74-75,82. | |
[63] | 季正冬. 加强煤矿瓦斯治理促进煤层气产业发展[J]. 中国战略新兴产业, 2018(32):58. |
[64] | 锁定“双碳”绿建未来.淮河能源集团, ( 2021-08-25)[2021-09-27]. https://www.sohu.com/a/485632539_121106991 |
[65] | 刘科. 碳中和误区及其现实路径,( 2021-08-16)[2021-09-27]. https://zhuanlan.zhihu.com/p/400212849 |
[66] | 张俊锋, 许文娟, 王跃锜, 等. 面向碳中和的中国碳排放现状调查与分析[J]. 华电技术, 2021, 43(10):1-10. |
ZHANG Junfeng, XU Wenjuan, WANG Yueqi, et al. Investigation and analysis on carbon emission status in China on the path to carbon neutrality[J]. Huadian Technology, 2021, 43(10):1-10. |
[1] | JIANG Ting, ZHAO Yajiao. Carbon emission reduction analysis for gas-based distributed integrated energy systems [J]. Integrated Intelligent Energy, 2022, 44(9): 27-32. |
[2] | Yating GUO, Tianyin DENG, Yanying LIU, Guangli HE. Research on the performance of membranes and anode materials in alkaline water electrolysis [J]. Integrated Intelligent Energy, 2022, 44(5): 64-68. |
[3] | WANG Yizheng, HU Jiahua, TANG Qiwen, ZHAO Yiyan, SHEN Qi. Hydropower generation optimization and photovoltaic generation consumption in the spot market for electricity [J]. Integrated Intelligent Energy, 2022, 44(2): 73-79. |
[4] | ZHANG Jinping, ZHOU Qiang, WANG Dingmei, LI Jin, LIU Lijuan, ZHANG Yanqi, WANG Sheng. Research on the development path of new power system to achieve carbon peaking and carbon neutrality [J]. Huadian Technology, 2021, 43(12): 46-51. |
[5] | AN Qingsong, YAN Ruoxue, SUN Boyang, MA Yitai. Natural working fluids transformation and carbon emission reduction potential on the path to carbon peaking and carbon neutrality [J]. Huadian Technology, 2021, 43(11): 85-90. |
[6] | DAI Baomin, LIU Shengchun, CAO Yu, YANG Haining, FENG Yining, XIAO Peng. Efficiency enhancement technology and carbon emission prediction of refrigeration system taking CO2 natural refrigerant in supermarkets [J]. Huadian Technology, 2021, 43(11): 74-84. |
[7] | LI Yang, WANG Heyang, WANG Yongzhen, ZHAO Jun. Background and routs of carbon neutrality and its nature-derived thermal solutions [J]. Huadian Technology, 2021, 43(11): 5-14. |
[8] | CHEN Erjian, JIA Teng, YAO Jian, DAI Yanjun. Progresses and applications of solar air conditioning and heat pump technologies [J]. Huadian Technology, 2021, 43(11): 40-48. |
[9] | CHEN Jianyong, LI Hao, CHEN Ying, ZHAO Jun. Application status and perspectives of air-source heat pump air conditioning technology [J]. Huadian Technology, 2021, 43(11): 25-39. |
[10] | WANG Guiling, YANG Xuan, MA Ling, ZHOU Jiaqi, SHEN Guohua, WANG Wanli. Status quo and prospects of geothermal energy in heat supply [J]. Huadian Technology, 2021, 43(11): 15-24. |
[11] | ZHAO Guotao, QIAN Guoming, WANG Sheng, DING Quan, ZHU Haidong. Analysis on solution for green and low-carbon transformation of thermal power enterprises to achieve carbon peak and carbon neutrality [J]. Huadian Technology, 2021, 43(10): 11-21. |
[12] |
ZHANG Bo.
Importance of three machines and one support five clean and five inspect importance brief analysis
[J]. Huadian Technology, 2017, 39(11): 73-74.
|
[13] |
HOU Baogui.
Lubrication for coal mine machinery
[J]. Huadian Technology, 2017, 39(11): 61-32.
|
[14] |
HAN Kaijun,TANG Zhizhang, LIU Jinsong, LI Qiang.
Internetofthingsbased underground minecar tracking system and application
[J]. Huadian Technology, 2017, 39(11): 49-51.
|
[15] |
ZHU Nanjing, CHEN Jiageng, NING Peng.
Basal water coal seam uncovering plan study
[J]. Huadian Technology, 2017, 39(11): 36-38.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||