Huadian Technology ›› 2021, Vol. 43 ›› Issue (6): 69-78.doi: 10.3969/j.issn.1674-1951.2021.06.009
• Carbon Sequestration and Utilization • Previous Articles Next Articles
SUN Luchang1(), WANG Zhengrong1, WU Chong1, WANG Kailiang1, ZHANG Shiming2, HAN Wenquan2
Received:
2021-05-20
Revised:
2021-06-06
Published:
2021-06-25
CLC Number:
SUN Luchang, WANG Zhengrong, WU Chong, WANG Kailiang, ZHANG Shiming, HAN Wenquan. Research on operation optimization of a 10 000 t/a carbon capture project for coal-fired power plants[J]. Huadian Technology, 2021, 43(6): 69-78.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.06.009
Tab.3
Operation cost of the carbon capture device
项目 | 消耗指标 | 单价 | 年运行费用/万元 | 占比/% |
---|---|---|---|---|
蒸汽 | 2.14 t/h | 78.00 元/t | 133.54 | 35.23 |
电 | 431.3 kW | 0.27 元/(kW·h) | 93.16 | 24.58 |
循环水 | 250 t/h | 0.20 元/t | 40.00 | 10.55 |
吸收剂 | 1.2 kg/t CO2 | 4.00 万元/t | 48.00 | 12.67 |
碱 | 0.1 kg/t CO2 | 0.30 万元/t | 0.30 | 0.08 |
人工 | 8 | 8.00 万元/(人·a) | 64.00 | 16.89 |
小计 | 379.00 | 100.00 |
[1] | IPCC. Global Warning of 1.5 ℃[R]. 2018. |
[2] |
TAPIA J F D, LEE J Y, OOI R E H, et al. A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage(CCUS) systems[J]. Sustainable Production and Consumption, 2018,13:1-15.
doi: 10.1016/j.spc.2017.10.001 |
[3] | 王志轩, 潘荔, 刘志强, 等. 中国煤电清洁发展现状及展望[J]. 电力科技与环保, 2018,34(1):1-8. |
WANG Zhixuan, PAN Li, LIU Zhiqiang, et al. Review of present situation and prospect for clean development of coal-fired power in China[J]. Electric Power Technology and Environmental Protection, 2018,34(1):1-8. | |
[4] | 张贤. 碳中和目标下中国碳捕集利用与封存技术应用前景[J]. 可持续发展经济导刊, 2020(12):22-24. |
ZHANG Xian. The application prospect of CCUS in China under the target of carbon neutrality[J]. China Sustainability Tribune, 2020(12):22-24. | |
[5] | IEA. Word energy outlook special report on energy and climate change[R]. 2015. |
[6] | FRAGKOS P. Assessing the role of carbon capture and storage in mitigation pathways of developing economies[J]. Energies, 2021,14(7).DOI: 10.3390/en14071879. |
[7] | 李小春, 张九天, 李琦, 等. 中国碳捕集、利用与封存技术路线图(2011版)实施情况评估分析[J]. 科技导报, 2018,36(4):85-95. |
LI Xiaochun, ZHANG Jiutian, LI Qi, et al. Implementation status and gap analysis of China's carbon dioxide capture,utilization and geological storage technology roadmap[J]. Science & Technology Review, 2018,36(4):85-95. | |
[8] | 秦积舜, 李永亮, 吴德彬, 等. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 2020,27(1):20-28. |
QIN Jishun, LI Yongliang, WU Debin, et al. CCUS global progress and China's policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):20-28. | |
[9] |
BATTERHAM R J. Clean power technology[J]. Engineering, 2020,6:1349-1350.
doi: 10.1016/j.eng.2020.10.004 |
[10] | 韩学义. 电力行业二氧化碳捕集、利用与封存现状与展望[J]. 中国资源综合利用, 2020,38(2):110-117. |
HAN Xueyi. Current situation and prospect of carbon dioxide capture, utilization and storage in electric power industry[J]. China's Resources Comprehensive Utilization, 2020,38(2):110-117. | |
[11] | 郭军军, 张泰, 李鹏飞, 等. 中国煤粉富氧燃烧的工业示范进展及展望[J]. 中国电机工程学报, 2021,41(4):1197-1208. |
GUO Junjun, ZHANG Tai, LI Pengfei, et al. Industrial demonstration progress and trend in pulverized coal Oxy-fuel combustion in China[J]. Proceedings of the CSEE, 2021,41(4):1197-1208. | |
[12] | 陈旭, 杜涛, 李刚, 等. 吸附工艺在碳捕集中的应用现状[J]. 中国电机工程学报, 2019,39(S1):155-163. |
CHEN Xu, DU Tao, LI Gang, et al. Application of adorption technology on carbon capture[J]. Proceedings of the CSEE, 2019,39(S1):155-163. | |
[13] | 罗双江, 白璐, 单玲珑, 等. 膜法二氧化碳分离技术研究进展及展望[J]. 中国电机工程学报, 2021,41(4):1209-1216. |
LUO Shuangjiang, BAI Lu, SHAN Linglong, et al. Research progress and prospect in membrane-mediated CO2 separation[J]. Proceedings of the CSEE, 2021,41(4):1209-1216. | |
[14] | 邓帅, 李双俊, 宋春风, 等. 微藻光合固碳效能研究:进展、挑战和解决路径[J]. 化工进展, 2018,37(3):928-937. |
DENG Shuai, LI Shuangjun, SONG Chunfeng, et al. Energy-efficiency research on photochemical-based microalgae carbon capture:Progress,challenge and developing pathway[J]. Chemical Industry and Engineering Progress, 2018,37(3):928-937. | |
[15] | 赵毅, 曾韵洁. 燃煤电厂二氧化碳捕集技术[J]. 山东化工, 2018,47(5):155-157. |
ZHAO Yi, ZENG Yunjie. Carbon dioxide capture technology in coal-fired power plant[J]. Shandong Chemical Industry, 2018,47(5):155-157. | |
[16] | 叶云云, 廖海燕, 王鹏, 等. 我国燃煤发电CCS/CCUS技术发展方向及发展路线图研究[J]. 中国工程科学, 2018,20(3):80-89. |
YE Yunyun, LIAO Haiyan, WANG Peng, et al. Research on technology direction and roadmap of CCS/CCUS for coal-fired power generation in China[J]. Strategic Study of CAE, 2018,20(3):80-89. | |
[17] |
LEE S Y, PARK S J. A review on solid adsorbents for caron dioxide capture[J]. Journal of Industrial and Engineering Chemistry, 2015,23:1-11.
doi: 10.1016/j.jiec.2014.09.001 |
[18] | 周旭健, 李清毅, 陈瑶姬, 等. 化学吸收法在燃后区CO2捕集分离中的研究和应用[J]. 能源工程, 2019(3):58-66. |
ZHOU Xujian, LI Qingyi, CHEN Yaoji, et al. Chemical solvents for post-combustion CO2 capture:A review[J]. Energy Engineering, 2019(3):58-66. | |
[19] | 吴彬, 黄坤荣, 刘子健. 化学吸收法捕集二氧化碳研究进展[J]. 广州化工, 2017,45(11):11-14. |
WU Bin, HUANG Kunrong, LIU Zijian. Research progress on carbon dioxide capture by chemical absorption[J]. Guangzhou Chemical Industry, 2017,45(11):11-14. | |
[20] |
BAI L, SHANG D W, LI M D, et al. CO2 absorption with ioni liquids at lelvated temperatures[J]. Journal of Energy Chemistry, 2017,26(5):1001-1006.
doi: 10.1016/j.jechem.2017.07.009 |
[21] | 林海周, 杨晖, 罗海中, 等. 烟气二氧化碳捕集胺类吸收剂研究进展[J]. 南方能源建设, 2019,6(1):16-21. |
LIN Haizhou, YANG Hui, LUO Haizhong, et al. Research progress on amine absorbent for CO2 capture from flue gas[J]. Southern Energy Construction, 2019,6(1):16-21. | |
[22] | 赵毅, 王永斌, 王添颢. 有机胺法吸收二氧化碳的研究进展[J]. 再生资源与循环经济, 2020,13(7):26-29. |
ZHAO Yi, WANG Yongbin, WANG Tianhao. Research progress on the absorption of carbon dioxide by organic amine method[J]. Recyclable Resources and Circular Economy, 2020,13(7):26-29. | |
[23] | 安山龙, 侯天锐, 臧欣怡, 等. 燃煤烟气CO2化学吸收剂研究进展[J]. 广州化工, 2019,47(3):19-21. |
AN Shanlong, HOU Tianrui, ZANG Xinyi, et al. Research progress on chemical absorbents for coal-fired flue gas CO2[J]. Guangzhou Chemical Industry, 2019,47(3):19-21. | |
[24] | 周旭萍. 氨基酸盐和混合CO2吸收剂的综合特性研究[D]. 杭州:浙江大学, 2016. |
[25] | 郭伟, 唐人虎. 2060碳中和目标下的电力行业[J]. 能源, 2020(11):19-26. |
GUO Wei, TANG Renhu. Power generation industry under the target of 2060 carbon neutrality[J]. Energy, 2020(11):19-26. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[3] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[4] | LI Pengzhen, JIA Bingke, LIU Yanhong, WU Zhenlong. Modified active disturbance rejection control on the post-combustion CO2 capture system [J]. Integrated Intelligent Energy, 2023, 45(8): 18-25. |
[5] | HE Shuwei, HAN Yinghui, XU Wenbin, ZHANG Yuanxun, SHAN Yulong, YU Yunbo. Simulation for CO2 emissions from private vehicles in Beijing under different energy strategies [J]. Integrated Intelligent Energy, 2023, 45(8): 26-35. |
[6] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[7] | TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality [J]. Integrated Intelligent Energy, 2023, 45(8): 53-63. |
[8] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[9] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[10] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[11] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
[12] | ZHAO Guotao, QIAN Guoming, SUN Yanbing, DING Quan, ZHU Haidong. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation [J]. Integrated Intelligent Energy, 2023, 45(6): 73-80. |
[13] | LIU Ziqi, SU Tingting, HE Jiayang, WANG Yu. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(6): 9-16. |
[14] | ZHOU Shuxin, FAN Huailin, HU Xun. Preparation of biomass-based carbon materials and its application as electrodes in supercapacitors [J]. Integrated Intelligent Energy, 2023, 45(5): 1-12. |
[15] | FAN Dekai, FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun. Review on the preparation of high-value chemicals from cellulose pyrolysis [J]. Integrated Intelligent Energy, 2023, 45(5): 24-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||