Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (12): 53-62.doi: 10.3969/j.issn.2097-0706.2023.12.007
• Optimal Operation and Control • Previous Articles Next Articles
QIAO Long1(), XIE Ligang2, XIONG Chen1, SONG Nanxin1, PU Wenhao1,*()
Received:
2023-09-13
Revised:
2023-10-07
Published:
2023-12-25
Supported by:
CLC Number:
QIAO Long, XIE Ligang, XIONG Chen, SONG Nanxin, PU Wenhao. Compressed supercritical carbon dioxide energy storage system coupled with heat pump and thermodynamic analysis[J]. Integrated Intelligent Energy, 2023, 45(12): 53-62.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.12.007
[1] | 魏书洲, 李兵发, 孙晨阳, 等. 压缩空气储能技术及其耦合发电机组研究进展[J]. 华电技术, 2021, 43(7):9-16. |
WEI Shuzhou, LI Bingfa, SUN Chenyang, et al. Research progress of compressed air energy storage technology and its coupling generator sets[J]. Huadian Technology, 2021, 43(7):9-16. | |
[2] |
CHAE Y J, LEE J I. Thermodynamic analysis of compressed and liquid carbon dioxide energy storage system integrated with steam cycle for flexible operation of thermal power plant[J]. Energy Conversion and Management, 2022, 256: 115374.
doi: 10.1016/j.enconman.2022.115374 |
[3] |
KANTHARAJ B, GARVEY S, PIMM A. Thermodynamic analysis of a hybrid energy storage system based on compressed air and liquid air[J]. Sustainable Energy Technologies and Assessments, 2015, 11:159-164.
doi: 10.1016/j.seta.2014.11.002 |
[4] | 韩中合, 郭森闯, 王珊, 等. 不同工质和储气室下压气储能系统的特性研究[J]. 太阳能学报, 2020, 41(9):29-35. |
HAN Zhonghe, GUO Senchuang, WANG Shan, et al. Research on the characteristics of compressed air energy storage system under different working fluids and gas storage chambers[J]. Journal of Solar Energy, 2020, 41(9):29-35. | |
[5] |
WANG M, ZHAO P, WU Y, et al. Performance analysis of a novel energy storage system based on liquid carbon dioxide[J]. Applied Thermal Engineering, 2015, 91:812-823.
doi: 10.1016/j.applthermaleng.2015.08.081 |
[6] |
ZHAO P, XU W P, ZHANG S Q, et al. Components design and performance analysis of a novel compressed carbon dioxide energy storage system: A pathway towards realizability[J]. Energy Conversion and Management, 2021, 229:113679.
doi: 10.1016/j.enconman.2020.113679 |
[7] |
ZHAO P, XU W P, GOU F F, et al. Performance analysis of a self‑condensation compressed carbon dioxide energy storage system with vortex tube[J]. Journal of Energy Storage, 2021, 41:102995.
doi: 10.1016/j.est.2021.102995 |
[8] |
ZHANG Y, LIANG T Y, YANG K. An integrated energy storage system consisting of compressed carbon dioxide energy storage and organic Rankine cycle:Exergy economic evaluation and multi-objective optimization[J]. Energy, 2022, 247:123566.
doi: 10.1016/j.energy.2022.123566 |
[9] |
GUO H, XU Y J, CHEN H S, et al. Thermodynamic characteristics of a novel supercritical compressed air energy storage system[J]. Energy Conversion and Management, 2016, 115:167-177.
doi: 10.1016/j.enconman.2016.01.051 |
[10] | ZHAO P, DAI Y P, WANG J F. Performance assessment and optimization of a combined heat and power system based on compressed air energy storage system and humid air turbine cycle[J]. Energy Conversion and Management, 2015(103):562-572. |
[11] |
FU H, HE Q, SONG J, et al. Thermodynamic of a novel solar heat storage compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2021, 247:114757.
doi: 10.1016/j.enconman.2021.114757 |
[12] |
CHEN K Q, PU W H, ZHANG Q, et al. Thermodynamic and economic assessment on the supercritical compressed carbon dioxide energy storage system coupled with solar thermal storage[J]. Journal of Energy Storage, 2021, 41: 102959.
doi: 10.1016/j.est.2021.102959 |
[13] |
XU M J, WANG X, WANG Z H, et al. Preliminary design and performance assessment of compressed supercritical carbon dioxide energy storage system[J]. Applied Thermal Engineering, 2021, 183: 116153.
doi: 10.1016/j.applthermaleng.2020.116153 |
[14] |
SUN L, XIE Y. Preliminary analysis and optimization of a thermoelectrical system based on the S-CO2cycle[J]. Heat Transfer Research, 2020, 51(2):103-113.
doi: 10.1615/HeatTransRes.v51.i2 |
[15] |
STANEKARTOSZ B, OCHMANN J, BARTELA L, et al. Isobaric tanks system for carbon dioxide energy storage—The performance analysis[J]. Journal of Energy Storage, 2022, 52: 104826.
doi: 10.1016/j.est.2022.104826 |
[16] | 戴义平, 胡东帅, 王明坤, 等. 一种新型的跨临界CO2储能系统[J]. 西安交通大学学报, 2016, 50(3):45-49. |
DAI Yiping, HU Dongshuani, WANG Mingkun, et al. A novel transcritical CO2 energy storage system[J]. Journal of Xi 'an Jiaotong University, 2016, 50(3):45-49. | |
[17] | 赵攀, 张仕强, 许文盼, 等. 具备近似等压放电过程的近似等温压缩CO2储能系统特性研究[J]. 西安交通大学学报, 2023, 57(1):34-44. |
ZHAO Pan, ZHANG Shiqiang, XU Wenpan, et al. Study on the characteristics of an approximate isothermal compression CO2 energy storage system with an approximate isobaric discharge process[J]. Journal of Xi'an Jiaotong University, 2023, 57(1):34-44. | |
[18] |
ZHANG X R, WANG G B. Thermodynamic analysis of a novel energy storage system based on compressed CO2 fluid[J]. International Journal of Energy Research, 2017, 41(10): 1487-1503.
doi: 10.1002/er.v41.10 |
[19] |
CAO Z, DENG J Q, ZHOU S H, et al. Research on the feasibility of compressed carbon dioxide energy storage system with underground sequestration in antiquated mine goaf[J]. Energy Conversion and Management, 2020, 211: 112788.
doi: 10.1016/j.enconman.2020.112788 |
[20] | ZHANG Y, WU Y T, YANG K. Dynamic characteristics of a two-stage compression and two‑stage expansion compressed carbon dioxide energy storage system under sliding pressure operation[J]. Energy conversion & management, 2022, 254(2): 115218. |
[21] |
AGHAGOLI A, SORIN M. CFD modelling and exergy analysis of a heat pump cycle with Tesla turbine using CO2 as a working fluid[J]. Applied Thermal Engineering, 2020, 178:115587.
doi: 10.1016/j.applthermaleng.2020.115587 |
[22] | 徐好, 高建业, 王金锋, 等. CO2跨临界双级压缩制冷系统的㶲分析[J]. 食品与机械, 2023, 39(7):77-84. |
XU Hao, GAO Jianye, WANG Jinfeng, et al. Analysis of CO2 transcritical two‑stage compression refrigeration system[J]. Food and machinery, 2023, 39(7):77-84. | |
[23] |
IVERSON B D, CONBOY T M, PASCH J J, et al. Supercritical CO2 Brayton cycles for solar‑thermal energy[J]. Applied Energy, 2013, 111:957-970.
doi: 10.1016/j.apenergy.2013.06.020 |
[1] | TANG Zihan, WANG Shuaijie, JU Zhenhe, LEI Zhiqi. Performance optimization of photovoltaic/thermal systems coupled with air source heat pumps [J]. Integrated Intelligent Energy, 2024, 46(4): 34-41. |
[2] | WANG Yongxu, ZHOU Tianyu, DENG Genggeng, XU Gang, WANG Zhuo. Plant-level intelligent operation optimization for cogeneration units equipped with absorption heat pumps [J]. Integrated Intelligent Energy, 2024, 46(3): 20-28. |
[3] | CAO Zilin, WANG Wenjing, ZHAO Wei, KANG Ligai, GAO Xiaofeng, YANG Yang, WANG Jinzhu. Research on optimal scheduling of distributed integrated energy systems in load-intensive areas considering demand response [J]. Integrated Intelligent Energy, 2023, 45(7): 11-21. |
[4] | SUN Jian, QIN Yu, HAO Junhong, YANG Yongping. Performance analysis on high temperature air source heat pump coupling cycle based on industrial waste heat [J]. Integrated Intelligent Energy, 2023, 45(7): 40-47. |
[5] | HAN Chaobing, TANG Bing, YIN Ruilin, ZHU Zhengxiang, XUE Minghua, ZHU Jianfei, AI Chunmei, SUN Li. Research on modeling and characteristic simulation of a typical integrated energy system [J]. Integrated Intelligent Energy, 2023, 45(6): 49-58. |
[6] | SUN Jian, WANG Yinwu, WU Kexin, TAO Jianlong, QIN Yu. Research and application of heat pump technology in integrated energy systems [J]. Integrated Intelligent Energy, 2023, 45(4): 1-11. |
[7] | LI Minxia, HOU Beiran, WANG Pai, DONG Liwei, TIAN Hua. Application and development of CO2 transcritical cycle heat pumps [J]. Integrated Intelligent Energy, 2023, 45(4): 12-18. |
[8] | SUN Jian, QIN Yu, WANG Yinwu, WU Kexin, GE Zhihua. Study on the optimal temperature for flue gas waste heat recovery of the heat pump with new working fluid [J]. Integrated Intelligent Energy, 2023, 45(4): 19-25. |
[9] | MO Jihang, MIAO Yanshu, CHEN Changrui, ZHANG Xiaomeng, NI Long. Experimental study on factors influencing flue gas emissions of gas engine-driven heat pumps [J]. Integrated Intelligent Energy, 2023, 45(4): 35-40. |
[10] | DOU Zihui, LIU Jingxia, LI Baoli. Study on the solar-assisted ground-source heat pump system with seasonal heat storage in cold regions [J]. Integrated Intelligent Energy, 2023, 45(4): 52-58. |
[11] | LIN Lianjie, FAN Yi, LI Jing, ZHAO Xudong, LI Yunhai. Operation performance analysis on a novel solar heat recovery quasi two-stage compression heat pump system under typical weather conditions [J]. Integrated Intelligent Energy, 2023, 45(4): 74-80. |
[12] | LIU Yuanyuan, GENG Zhi, ZHANG Yuanfeng, ZHANG Liang, HAN Zhao, ZHANG Bin. Analysis of heat transfer characteristics and thermal-permeability coupling characteristics of single U-tube borehole heat exchangers [J]. Integrated Intelligent Energy, 2023, 45(4): 81-88. |
[13] | ZHANG Siliang, QI Lintong, QU Haowei, ZANG Dehua, ZHOU Wenhan, WANG Lidi. Research on solar assisted air source heat pump heating systems [J]. Integrated Intelligent Energy, 2023, 45(12): 10-19. |
[14] | LIU Yuanyuan, LIU Fangfang, JIA Tianxiang, HAN Zhao, SHANG Yongqiang, JIANG Shu. Design of the integrated energy heating(cooling) system for a commercial and residential park and its economy analysis [J]. Integrated Intelligent Energy, 2023, 45(12): 20-28. |
[15] | JI Mingda, GOU Yujun, ZHONG Xiaohui. Performance simulation and analysis on photovoltaic and photothermal integration system in Baiyin area [J]. Integrated Intelligent Energy, 2023, 45(12): 43-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||