Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (10): 12-17.doi: 10.3969/j.issn.2097-0706.2024.10.002
• New Energy System Optimization • Previous Articles Next Articles
Received:
2024-06-07
Revised:
2024-08-31
Accepted:
2024-10-25
Published:
2024-10-25
Supported by:
CLC Number:
LI Mingyang, DONG Zhe. Pricing mechanism and optimal scheduling of virtual power plants containing distributed renewable energy and demand response loads[J]. Integrated Intelligent Energy, 2024, 46(10): 12-17.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.10.002
[1] | 杨力帆, 周鲲, 齐增清, 等. 基于需求响应的虚拟电厂多时间尺度优化调度[J]. 电网与清洁能源, 2024, 40(3): 10-21. |
YANG Lifan, ZHOU Kun, QI Zengqing, et al. A multi-time scale optimal scheduling strategy of virtual power plants based on demand response[J]. Power System and Clean Energy, 2024, 40(3): 10-21. | |
[2] |
张静, 李昊, 李文, 等. 面向碳中和的中国电能替代发展路径规划方法探讨[J]. 电力建设, 2022, 43(9): 47-53.
doi: 10.12204/j.issn.1000-7229.2022.09.005 |
ZHANG Jing, LI Hao, LI Wen, et al. Discussion on the pathways of China's electrification polices to pursue the carbon neutralization target[J]. Electric Power Construction, 2022, 43(9): 47-53.
doi: 10.12204/j.issn.1000-7229.2022.09.005 |
|
[3] | CHEN S J, LIU C C. From demand response to transactive energy: State of the art[J]. Journal of Modern Power Systems and Clean Energy, 2017, 5(1): 10-19. |
[4] |
王康平, 黄曲粲, 张兴科, 等. 考虑调峰成本的大规模电动汽车分群调度策略[J]. 综合智慧能源, 2022, 44(11): 12-19.
doi: 10.3969/j.issn.2097-0706.2022.11.002 |
WANG Kangping, HUANG Qucan, ZHANG Xingke, et al. Strategy for large-scale electric vehicles cluster scheduling considering peak-shaving cost[J]. Integrated Intelligent Energy, 2022, 44(11): 12-19.
doi: 10.3969/j.issn.2097-0706.2022.11.002 |
|
[5] | 何金松, 叶鹏, 张涛, 等. 面向电力系统应用的空调负荷研究综述[J]. 沈阳工程学院学报(自然科学版), 2019, 15(4): 343-349. |
HE Jinsong, YE Peng, ZHANG Tao, et al. Research overview of air conditioning load for power system application[J]. Journal of Shenyang Institute of Engineering (Natural Science), 2019, 15(4): 343-349. | |
[6] | 皎月. 2022新能源汽车产业排行[J]. 互联网周刊, 2023(9):8-9. |
JIAO Yue. 2022 New energy vehicle industry ranking[J]. China Internet Week, 2023(9):8-9. | |
[7] | 徐筝, 孙宏斌, 郭庆来. 综合需求响应研究综述及展望[J]. 中国电机工程学报, 2018, 38(24): 7194-7205. |
XU Zheng, SUN Hongbin, GUO Qinglai. Review and prospect of integrated demand response[J]. Proceedings of the CSEE, 2018, 38(24): 7194-7205. | |
[8] | 王彩霞, 时智勇, 梁志峰, 等. 新能源为主体电力系统的需求侧资源利用关键技术及展望[J]. 电力系统自动化, 2021, 45(16): 37-48. |
WANG Caixia, SHI Zhiyong, LIANG Zhifeng, et al. Key technologies and prospects of demand-side resource utilization for power systems dominated by renewable energy[J]. Automation of Electric Power Systems, 2021, 45(16): 37-48. | |
[9] |
曹紫霖, 王文静, 赵薇, 等. 考虑需求响应的负荷密集区分布式综合能源系统优化调度研究[J]. 综合智慧能源, 2023, 45(7): 11-21.
doi: 10.3969/j.issn.2097-0706.2023.07.002 |
CAO Zilin, WANG Wenjing, ZHAO Wei, et al. Research on optimal scheduling of distributed integrated energy systems in load-intensive areas considering demand response[J]. Integrated Intelligent Energy, 2023, 45(7): 11-21.
doi: 10.3969/j.issn.2097-0706.2023.07.002 |
|
[10] |
刘健, 刘雨鑫, 庄涵羽. 虚拟电厂关键技术及其建设实践[J]. 综合智慧能源, 2023, 45(6): 59-65.
doi: 10.3969/j.issn.2097-0706.2023.06.008 |
LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants[J]. Integrated Intelligent Energy, 2023, 45(6): 59-65.
doi: 10.3969/j.issn.2097-0706.2023.06.008 |
|
[11] | SOWA T, VASCONCELOS M, SCHNETTLER A, et al. Method for the operation planning of virtual power plants considering forecasting errors of distributed energy resources[J]. Electrical Engineering, 2016, 98(4): 347-354. |
[12] | 谢敏, 黄莹, 李弋升, 等. 分布式能源动态聚合于虚拟电厂的演化博弈决策方法和机理分析[J]. 电网技术, 2023, 47(12): 4958-4977. |
XIE Min, HUANG Ying, LI Yisheng, et al. Evolutionary game decision and mechanism analysis of dynamical aggregation of distributed energy resources into virtual power plant[J]. Power System Technology, 2023, 47(12): 4958-4977. | |
[13] | 梅书凡. 市场条件下含多种分布式能源的虚拟电厂运营优化研究[D]. 北京: 华北电力大学, 2022. |
MEI Shufan. Research on operation optimization of virtual power plant with multi-distributed energy under market conditions[D]. Beijing: North China Electric Power University, 2022. | |
[14] | KUMAR P A, KUMAR J V, SABHAHIT JAYALAKSHMI N. Real-time peak valley pricing based multi-objective optimal scheduling of a virtual power plant considering renewable resources[J]. Energies, 2022, 15(16): 5970. |
[15] | TAN Y T, ZHI Y M, LUO Z B, et al. Optimal scheduling of virtual power plant with flexibility margin considering demand response and uncertainties[J]. Energies, 2023, 16(15):5833. |
[16] | CAO J Y, ZHENG Y Y, HAN X R, et al. Two-stage optimization of a virtual power plant incorporating with demand response and energy complementation[J]. Energy Reports, 2022, 87374-7385. |
[17] | LIU Z, ZHENG W, QI F, et al. Optimal dispatch of a virtual power plant considering demand response and carbon trading[J]. Energies, 2018, 11(6): 1488-1488. |
[18] | 焦丰顺, 张杰, 任畅翔, 等. 多种绿色能源形态下的虚拟电厂定价机制研究[J]. 南方能源建设, 2020, 7(1): 133-139. |
JIAO Fengshun, ZHANG Jie, REN Changxiang, et al. Research on pricing mechanism of virtual power plants containing multiple green energy sources[J]. Southern Energy Construction, 2020, 7(1): 133-139. | |
[19] | CHEN W, QIU J, ZHAO J, et al. Customized rebate pricing mechanism for virtual power plants using a hierarchical game and reinforcement learning approach[J]. IEEE Transactions on Smart Grid, 2023, 14(1): 424-439. |
[20] | 张忠伟. 考虑源荷双重不确定性的虚拟电厂内部定价机制研究[D]. 重庆: 重庆工商大学, 2023. |
ZHANG Zhongwei. Research on internal pricing mechanism of virtual power plant considering double uncertainty of source and load[D]. Chongqing: Chongqing Technology and Business University, 2023. | |
[21] |
魏震波, 马新如, 郭毅, 等. 碳交易机制下考虑需求响应的综合能源系统优化运行[J]. 电力建设, 2022, 43(1): 1-9.
doi: 10.12204/j.issn.1000-7229.2022.01.001 |
WEI Zhenbo, MA Xinru, GUO Yi, et al. Optimized operation of integrated energy system considering demand response under carbon trading mechanism[J]. Electric Power Construction, 2022, 43(1): 1-9.
doi: 10.12204/j.issn.1000-7229.2022.01.001 |
|
[22] | 李嘉媚, 艾芊. 考虑调峰辅助服务的虚拟电厂运营模式[J]. 电力自动化设备, 2021, 41(6): 1-13. |
LI Jiamei, AI Qian. Operation mode of virtual power plant considering peak regulation auxiliary service[J]. Electric Power Automation Equipment, 2021, 41(6): 1-13. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[3] | YU Haibin, LU Wenzhou, TANG Liang, ZHANG Yuchen, ZOU Xiangyu, JIANG Yuliang, LIU Jiabao. Economic dispatch and profit distribution strategy for multi-agent virtual power plants considering risk preferences [J]. Integrated Intelligent Energy, 2024, 46(6): 66-77. |
[4] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[5] | JIANG Jian, XU Fengliang, LI Xiaoming, SUN Jianchao, JIANG Huahua, ZHANG Jiaxin, MA Siyuan, YANG Zishuai. Load frequency control of renewable energy power systems considering demand response of air conditioning clusters based on fractional-order integral sliding mode [J]. Integrated Intelligent Energy, 2024, 46(10): 18-25. |
[6] | WU Qi, ZHAO Xuanming, ZHANG Jiacheng, QIU Zhifeng, WANG Yalin. Study on low-carbon demand response considering electricity-carbon price coupling [J]. Integrated Intelligent Energy, 2024, 46(10): 56-66. |
[7] | BAO Haibo, LIANG Junjie, LI Xiang. Modeling and analysis on demand response for generalized load of power supply systems in industrial parks [J]. Integrated Intelligent Energy, 2024, 46(1): 11-17. |
[8] | TIAN Zeyu, SHA Zhaoyang, ZHAO Quanbin, YAN Hui, CHONG Daotong. Research on control strategy for virtual power plants in response to thermostatically controlled loads [J]. Integrated Intelligent Energy, 2024, 46(1): 28-37. |
[9] | LI Bohang, LI Hongzhong, ZHANG Minyuan. Low-carbon economic dispatch of integrated energy systems considering load characteristics [J]. Integrated Intelligent Energy, 2023, 45(8): 72-79. |
[10] | YU Haibin, GAO Yiling, LU Zengjie, DONG Shuai, LU Lin, REN Yizhi. Low-carbon economic scheduling of deep peak regulating market with the participation of wind power,thermal power,storage and carbon capture units considering demand response [J]. Integrated Intelligent Energy, 2023, 45(8): 80-89. |
[11] | CAO Zilin, WANG Wenjing, ZHAO Wei, KANG Ligai, GAO Xiaofeng, YANG Yang, WANG Jinzhu. Research on optimal scheduling of distributed integrated energy systems in load-intensive areas considering demand response [J]. Integrated Intelligent Energy, 2023, 45(7): 11-21. |
[12] | BAO Yixin, XU Luoyun, YANG Qiang. Optimized control method for flexible load of a building complex based on MADDPG reinforcement learning [J]. Integrated Intelligent Energy, 2023, 45(7): 61-69. |
[13] | HU Ze, ZHU Ziqing, BU Siqi, CHAN Jiarong, WEI Xiang. Pricing strategy in district-level integrated energy market based on deep reinforcement learning [J]. Integrated Intelligent Energy, 2023, 45(7): 87-96. |
[14] | GE Leijiao, YU Weikun, ZHU Ruoyuan, WANG Guantao, BAI Xingzhen. Integrated energy system optimization scheduling considering improved stepped carbon trading mechanism and demand responses [J]. Integrated Intelligent Energy, 2023, 45(7): 97-106. |
[15] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||