Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (6): 20-29.doi: 10.3969/j.issn.2097-0706.2025.06.003
• Optimal Control on Integrated Energy Systems • Previous Articles Next Articles
CHENG Xianlong(), ZHANG Jie, LI Siying, YANG Yixia, YANG Cuifei
Received:
2024-10-12
Revised:
2024-10-28
Published:
2025-06-25
Supported by:
CLC Number:
CHENG Xianlong, ZHANG Jie, LI Siying, YANG Yixia, YANG Cuifei. Short-term wind power prediction based on VMD-BP-BiLSTM[J]. Integrated Intelligent Energy, 2025, 47(6): 20-29.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.06.003
Table 1
Prediction error results of different algorithms
项目 | 3月 | 6月 | 9月 | 12月 | 平均 | |
---|---|---|---|---|---|---|
RMSE/MW | BP | 22.39 | 16.30 | 17.16 | 20.40 | 19.06 |
BiLSTM | 22.40 | 17.56 | 16.58 | 15.80 | 18.08 | |
ELM | 43.23 | 23.99 | 23.11 | 21.71 | 28.01 | |
CNN-LSTM | 49.90 | 23.98 | 28.08 | 23.59 | 31.39 | |
VMD-BP-BiLSTM | 21.64 | 16.44 | 16.29 | 14.35 | 17.18 | |
MAE/MW | BP | 15.23 | 13.04 | 12.53 | 10.34 | 12.79 |
BiLSTM | 16.10 | 14.73 | 12.40 | 7.84 | 12.77 | |
ELM | 34.76 | 20.47 | 17.24 | 14.43 | 21.72 | |
CNN-LSTM | 41.37 | 21.28 | 24.97 | 16.08 | 25.93 | |
VMD-BP-BiLSTM | 15.00 | 12.34 | 11.98 | 7.16 | 11.62 | |
MAPE/% | BP | 23.12 | 20.23 | 9.32 | 36.12 | 22.20 |
BiLSTM | 26.92 | 39.45 | 9.21 | 14.68 | 22.57 | |
ELM | 95.78 | 57.12 | 54.92 | 64.76 | 68.15 | |
CNN-LSTM | 152.34 | 113.49 | 94.91 | 61.26 | 105.50 | |
VMD-BP-BiLSTM | 10.02 | 10.86 | 11.32 | 16.67 | 12.22 |
Table 3
Prediction errors of different wind power stations
项目 | #1站 | #2站 | #3站 | #4站 | 平均 | |
---|---|---|---|---|---|---|
RMSE/MW | BP | 22.39 | 38.99 | 31.07 | 18.29 | 27.68 |
BiLSTM | 22.40 | 37.60 | 30.11 | 17.01 | 26.78 | |
ELM | 43.23 | 39.84 | 40.22 | 27.02 | 37.58 | |
CNN-LSTM | 49.90 | 66.17 | 58.61 | 27.83 | 50.63 | |
VMD-BP-BiLSTM | 21.64 | 33.56 | 28.27 | 15.22 | 24.67 | |
MAE/MW | BP | 15.23 | 32.04 | 22.33 | 14.88 | 21.12 |
BiLSTM | 16.10 | 33.59 | 23.18 | 12.74 | 21.40 | |
ELM | 34.76 | 33.63 | 32.20 | 20.80 | 30.35 | |
CNN-LSTM | 41.37 | 56.25 | 46.38 | 22.94 | 41.73 | |
VMD-BP-BiLSTM | 15.00 | 28.90 | 22.08 | 11.98 | 19.49 | |
MAPE/% | BP | 23.12 | 0.61 | 0.31 | 0.56 | 6.15 |
BiLSTM | 26.92 | 0.53 | 0.32 | 0.75 | 7.13 | |
ELM | 95.78 | 0.55 | 0.36 | 1.04 | 24.43 | |
CNN-LSTM | 152.34 | 0.56 | 0.39 | 0.75 | 38.51 | |
VMD-BP-BiLSTM | 10.02 | 0.57 | 0.31 | 0.44 | 2.84 |
[1] | 赵长伟, 王慧, 顾志成, 等. 分散式风储系统频率和电压调节能力评估关键技术[J]. 综合智慧能源, 2024, 46(6): 78-87. |
ZHAO Changwei, WANG Hui, GU Zhicheng, et al. Key technologies of the evaluation on distributed wind-storage systems' frequency and voltage regulation capacities[J]. Integrated Intelligent Energy, 2024, 46(6): 78-87. | |
[2] | 孙荣富, 张涛, 和青, 等. 风电功率预测关键技术及应用综述[J]. 高电压技术, 2021, 47(4): 1129-1143. |
SUN Rongfu, ZHANG Tao, HE Qing, et al. Review on key technologies and applications in wind power forecasting[J]. High Voltage Engineering, 2021, 47(4): 1129-1143. | |
[3] | 杨秀媛, 肖洋, 陈树勇. 风电场风速和发电功率预测研究[J]. 中国电机工程学报, 2005, 25(11): 1-5. |
YANG Xiuyuan, XIAO Yang, CHEN Shuyong. Wind speed and generated power forecasting in wind farm[J]. Proceedings of the CSEE, 2005, 25(11): 1-5. | |
[4] | 王维高, 魏云冰, 滕旭东. 基于VMD-SSA-LSSVM的短期风电预测[J]. 太阳能学报, 2023, 44(3): 204-211. |
WANG Weigao, WEI Yunbing, TENG Xudong. Short-term wind power forecasting based on VMD-SSA-LSSVM[J]. Acta Energiae Solaris Sinica, 2023, 44(3): 204-211. | |
[5] | 冯双磊, 王伟胜, 刘纯, 等. 基于物理原理的风电场短期风速预测研究[J]. 太阳能学报, 2011, 32(5): 611-616. |
FENG Shuanglei, WANG Weisheng, LIU Chun, et al. Short term wind speed prediction based on physical principle[J]. Acta Energiae Solaris Sinica, 2011, 32(5): 611-616. | |
[6] | 孙斌, 姚海涛, 刘婷. 基于高斯过程回归的短期风速预测[J]. 中国电机工程学报, 2012, 32(29): 104-109. |
SUN Bin, YAO Haitao, LIU Ting. Short-term wind speed forecasting based on Gaussian process regression model[J]. Proceedings of the CSEE, 2012, 32(29): 104-109. | |
[7] | 曹俊波, 周任军, 邓学华, 等. 考虑优化ARIMA模型差分次数的风功率预测[J]. 电力系统及其自动化学报, 2019, 31(1): 105-111. |
CAO Junbo, ZHOU Renjun, DENG Xuehua, et al. Wind power forecast considering differential times of optimal ARIMA model[J]. Proceedings of the CSU-EPSA, 2019, 31(1): 105-111. | |
[8] | 叶林, 刘鹏. 基于经验模态分解和支持向量机的短期风电功率组合预测模型[J]. 中国电机工程学报, 2011, 31(31): 102-108. |
YE Lin, LIU Peng. Combined model based on EMD-SVM for short-term wind power prediction[J]. Proceedings of the CSEE, 2011, 31(31): 102-108. | |
[9] | 刘立群, 韩路路, 张路娜, 等. 基于BP神经网络的风电功率预测方法[J]. 自动化应用, 2021(6): 3-6. |
LIU Liqun, HAN Lulu, ZHANG Luna, et al. Wind power forecasting method based on BP neural network[J]. Automation Application, 2021(6): 3-6. | |
[10] | 吴晨, 姚菁, 薛贵元, 等. 基于MMoE多任务学习和长短时记忆网络的综合能源系统负荷预测[J]. 电力自动化设备, 2022, 42(7): 33-39. |
WU Chen, YAO Jing, XUE Guiyuan, et al. Load forecasting of integrated energy system based on MMoE multi-task learning and LSTM[J]. Electric Power Automation Equipment, 2022, 42(7): 33-39. | |
[11] | 龚飘怡, 罗云峰, 方哲梅, 等. 基于Attention-BiLSTM-LSTM神经网络的短期电力负荷预测方法[J]. 计算机应用, 2021, 41(S1): 81-86. |
GONG Piaoyi, LUO Yunfeng, FANG Zhemei, et al. Short-term power load forecasting method based on Attention-BiLSTM-LSTM neural network[J]. Journal of Computer Applications, 2021, 41(S1): 81-86. | |
[12] | 王渝红, 史云翔, 周旭, 等. 基于时间模式注意力机制的BiLSTM多风电机组超短期功率预测[J]. 高电压技术, 2022, 48(5): 1884-1892. |
WANG Yuhong, SHI Yunxiang, ZHOU Xu, et al. Ultra-short-term power prediction for BiLSTM multi wind turbines based on temporal pattern attention[J]. High Voltage Engineering, 2022, 48(5): 1884-1892. | |
[13] | 栗然, 马涛, 张潇, 等. 基于卷积长短期记忆神经网络的短期风功率预测[J]. 太阳能学报, 2021, 42(6): 304-311. |
LI Ran, MA Tao, ZHANG Xiao, et al. Short-term wind power prediction based on convolutional long-short-term memory neural networks[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 304-311. | |
[14] | 王愈轩, 梁沁雯, 章思远, 等. 基于LSTM-XGboost组合的超短期风电功率预测方法[J]. 科学技术与工程, 2022, 22(14): 5629-5635. |
WANG Yuxuan, LIANG Qinwen, ZHANG Siyuan, et al. An ultra-short-term wind power prediction method based on LSTM-XGboost combination[J]. Science Technology and Engineering, 2022, 22(14): 5629-5635. | |
[15] | 陈中慧, 王海云, 王维庆, 等. 基于数据挖掘与小波去噪的短期风电功率预测[J]. 计算机仿真, 2021, 38(9): 90-94, 133. |
CHEN Zhonghui, WANG Haiyun, WANG Weiqing, et al. Short-term wind power prediction based on data mining and wavelet denoising[J]. Computer Simulation, 2021, 38(9): 90-94, 133. | |
[16] | 魏骜, 茅大钧, 韩万里, 等. 基于EMD和长短期记忆网络的短期电力负荷预测研究[J]. 热能动力工程, 2020, 35(4): 203-209. |
WEI Ao, MAO Dajun, HAN Wanli, et al. Short-term load forecasting based on EMD and long short-term memory neural networks[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(4): 203-209. | |
[17] | 黄志祥, 周莉. 基于VMD-LSTM的短期电力负荷预测研究[J]. 洛阳理工学院学报(自然科学版), 2022, 32(3): 76-80, 96. |
HUANG Zhixiang, ZHOU Li. Research on short term load forecasting based on VMD-LSTM[J]. Journal of Luoyang Institute of Science and Technology (Natural Science Edition), 2022, 32(3): 76-80, 96. | |
[18] | DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. |
[19] | 金书池, 王宇驰. 基于GWO-BP-AdaBoost的多风电场功率预测[J]. 现代工业经济和信息化, 2024, 14(8): 238-244. |
JIN Shuchi, WANG Yuchi. Wind power prediction of multiple wind farms based on GWO-BP-AdaBoost[J]. Modern Industrial Economy and Informatization, 2024, 14(8): 238-244. | |
[20] | 章志晃, 徐启峰, 林穿. 基于SSA-BiLSTM-AM的短期风电功率预测[J]. 国外电子测量技术, 2023, 42(3): 46-51. |
ZHANG Zhihuang, XU Qifeng, LIN Chuan. Short-term wind power prediction based on SSA-BiLSTM-AM[J]. Foreign Electronic Measurement Technology, 2023, 42(3): 46-51. | |
[21] | 任建吉, 位慧慧, 邹卓霖, 等. 基于CNN-BiLSTM-Attention的超短期电力负荷预测[J]. 电力系统保护与控制, 2022, 50(8): 108-116. |
REN Jianji, WEI Huihui, ZOU Zhuolin, et al. Ultra-short-term power load forecasting based on CNN-BiLSTM-Attention[J]. Power System Protection and Control, 2022, 50(8): 108-116. | |
[22] | 席管龙, 胥勇. 基于AC0-BP风电功率预测研究[J]. 中国设备工程, 2024(S1): 104-106. |
XI Guanlong, XU Yong. Research on wind power prediction based on AC0-BP[J]. China Plant Engineering, 2024(S1): 104-106. | |
[23] | 陈水明. 基于改进BP神经网络的风电功率预测[J]. 中国高新科技, 2023(7): 30-32. |
CHEN Shuiming. Wind power prediction based on improved BP neural network[J]. China High-Tech, 2023(7): 30-32. | |
[24] | 张晓珂, 张辉, 戴小然, 等. 基于层次聚类和BILSTM的光伏短期功率预测模型[J]. 智慧电力, 2024, 52(9): 41-48. |
ZHANG Xiaoke, ZHANG Hui, DAI Xiaoran, et al. Photovoltaic short-term power forecasting model based on hierarchical clustering & BILSTM[J]. Smart Power, 2024, 52(9): 41-48. | |
[25] | 高明, 郝妍. 基于BiLSTM网络与误差修正的超短期负荷预测[J]. 综合智慧能源, 2023, 45(1): 31-40. |
GAO Ming, HAO Yan. Ultra-short-term load forecasting based on BiLSTM network and error correction[J]. Integrated Intelligent Energy, 2023, 45(1): 31-40. | |
[26] | 王晓东, 栗杉杉, 刘颖明, 等. 基于特征变权的超短期风电功率预测[J]. 太阳能学报, 2023, 44(2): 52-58. |
WANG Xiaodong, LI Shanshan, LIU Yingming, et al. Ultra-short-term wind power prediction based on variable feature weight[J]. Acta Energiae Solaris Sinica, 2023, 44(2): 52-58. | |
[27] | 谢谦, 董立红, 厍向阳. 基于Attention-GRU的短期电价预测[J]. 电力系统保护与控制, 2020, 48(23):154-160. |
XIE Qian, DONG Lihong, SHE Xiangyang. Short-term electricity price forecasting based on Attention-GRU[J]. Power System Protection and Control, 2020, 48(23): 154-160. |
[1] | YIN Linfei, ZHANG Yiling. Photovoltaic power output prediction based on variational mode decomposition and triple convolutional neural networks [J]. Integrated Intelligent Energy, 2025, 47(6): 11-19. |
[2] | BAN Fengchun, CHEN Xiaofeng, HUANG Zhijia. Residential photovoltaic power generation prediction model based on PSO-BP neural network [J]. Integrated Intelligent Energy, 2025, 47(6): 85-93. |
[3] | BAI Liuxing, WU Feiyu, YE Luyang, CAI Changlin, LEI Xia. A joint clearing model of electricity spot market considering wind power uncertainty [J]. Integrated Intelligent Energy, 2025, 47(5): 73-83. |
[4] | YIN Linfei, MENG Yujie. Short-term wind power forecasting based on DenseNet convolutional neural networks [J]. Integrated Intelligent Energy, 2024, 46(7): 12-20. |
[5] | ZHANG Xunxiang, WU Jiekang, SUN Yehua, PENG Qijian. Capacity allocation optimization of hybrid energy storage systems considering fluctuation control on offshore wind power [J]. Integrated Intelligent Energy, 2024, 46(6): 54-65. |
[6] | JIANG Shanhe, LI Wei, XU Xiaoyan, WANG Dekai. Short-term wind power forecasting based on variational mode decomposition and generative adversarial networks [J]. Integrated Intelligent Energy, 2024, 46(2): 28-35. |
[7] | DU Dongsheng, LIAN He, DENG Xiangshuai, REN Yiming, ZHAO Zhemin. Fault diagnosis of proton exchange membrane fuel cells based on MVMD and ISCSO-HKELM [J]. Integrated Intelligent Energy, 2024, 46(12): 17-28. |
[8] | YAN Xinchun, CAO Huan, HUA Yunpeng. Prediction on tube wall temperatures of boiler heating surfaces based on artificial intelligence [J]. Integrated Intelligent Energy, 2022, 44(3): 58-62. |
[9] | LIAO Minle, HUANG Chongyang, DAI Chengcheng, LI Hualin, FAN Gaosong. Analysis method of electric energy substitution potential based on time series and BP neural network [J]. Integrated Intelligent Energy, 2022, 44(3): 38-43. |
[10] | ZHAI Guangsong, WANG Peng, LIANG Pengxun, XIE Zhifeng, YIN Hao. Day-ahead electricity price prediction model based on GRU optimized by crossover optimization algorithm [J]. Integrated Intelligent Energy, 2022, 44(11): 36-42. |
[11] | CHEN De, MENG Anbo, CAI Yongfeng. Intelligent evaluation of cable harmonic loss based on CSO-BP neural network [J]. Huadian Technology, 2021, 43(8): 41-47. |
[12] | LI Yongqi, LEI Qikai, WANG Hao, HUA Sicong. State of health estimation for echelon-used batteries based on BP neural network [J]. Huadian Technology, 2021, 43(7): 42-46. |
[13] | TAN Zhiling, CHEN Caiming, XU Shengchao, WU Zhihong, SONG Yin, WANG Pengfei. Research on service life prediction on rolling bearings based on vibration signal analysis [J]. Huadian Technology, 2021, 43(5): 36-44. |
[14] | HU Qian, SUN Zhida, JIANG Keteng, LEI Yi, LI Haibo. Deviation assessment and control method for electricity sales companies based on short-term load bundling forecast [J]. Huadian Technology, 2021, 43(4): 47-55. |
[15] | SU Yu, ZHOU Chuan, WANG Qianggang. Closed-loop management on line loss indicators in a transformer area based on IoT [J]. Huadian Technology, 2021, 43(1): 19-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||