Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (8): 10-20.doi: 10.3969/j.issn.2097-0706.2025.08.002
• Multi-dimensional Energy Storage Technology • Previous Articles Next Articles
					
													YU Ziyi1( ), PAN Tinglong1,*(
), PAN Tinglong1,*( ), GE Ke2(
), GE Ke2( ), DOU Zhenlan3(
), DOU Zhenlan3( ), XU Dezhi4(
), XU Dezhi4( )
)
												  
						
						
						
					
				
Received:2024-09-19
															
							
																	Revised:2024-10-21
															
							
															
							
							
																	Published:2025-06-03
															
						Contact:
								PAN Tinglong   
																	E-mail:6221915027@stu.jiangnan.edu.cn;tlpan@jiangnan.edu.cn;geke123@163.com;douzhl@126.com;xudezhi@seu.edu.cn
																					Supported by:CLC Number:
YU Ziyi, PAN Tinglong, GE Ke, DOU Zhenlan, XU Dezhi. Fault diagnosis technology for lithium-ion batteries based on electro-thermal coupling model[J]. Integrated Intelligent Energy, 2025, 47(8): 10-20.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.08.002
 
													
													Table 1
Polynomial coefficients of UOC-SOC fitting for lithium-ion batteries
| 拟合参数 | 温度/℃ | ||||
|---|---|---|---|---|---|
| -20 | -10 | 0 | 10 | 25 | |
| P1 | 1.044 0 | 2.880 0 | 4.031 0 | 14.520 0 | 11.370 0 | 
| P2 | 0.047 4 | -4.067 0 | -0.775 0 | -41.560 0 | -31.170 0 | 
| P3 | -3.195 0 | -1.877 0 | 1.132 0 | 42.530 0 | 27.210 0 | 
| P4 | 3.042 0 | 5.739 0 | 5.956 0 | -17.700 0 | -6.102 0 | 
| P5 | -0.939 1 | -2.919 0 | -4.066 0 | 2.066 0 | -2.695 0 | 
| P6 | 0.631 2 | 1.057 0 | 1.471 0 | 0.957 3 | 1.991 0 | 
| P7 | 3.439 0 | 3.414 0 | 3.357 0 | 3.325 0 | 3.220 0 | 
| R2 | 0.999 6 | 0.999 9 | 0.999 9 | 0.999 6 | 0.999 7 | 
| [1] | 黄晓凡, 李佳瑞, 刘晖, 等. 梯次利用动力电池储能系统综合效益分析[J]. 综合智慧能源, 2024, 46(7): 63-73. doi: 10.3969/j.issn.2097-0706.2024.07.008 | 
| HUANG Xiaofan, LI Jiarui, LIU Hui, et al. Comprehensive benefit analysis on the cascade utilization of a power battery system[J]. Integrated Intelligent Energy, 2024, 46(7): 63-73. doi: 10.3969/j.issn.2097-0706.2024.07.008 | |
| [2] | 杨帅, 张金换, 钱占伟, 等. 汽车安全多领域融合的研究与展望[J]. 汽车安全与节能学报, 2022, 13(1): 29-47. | 
| YANG Shuai, ZHANG Jinhuan, QIAN Zhanwei, et al. Research and prospect of multi domain integration of automobile safety[J]. Journal of Automotive Safety and Energy, 2022, 13(1): 29-47. | |
| [3] | 吕杰, 王敬翰, 宋文吉, 等. 储能用锂离子电池电热耦合模型研究进展[J]. 电池, 2023, 53(6): 668-672. | 
| LYU Jie, WANG Jinghan, SONG Wenji, et al. Advances in electro-thermal coupling models for energy storage Li-ion battery[J]. Battery Bimonthly, 2023, 53(6): 668-672. | |
| [4] | 苏伟, 钟国彬, 沈佳妮, 等. 锂离子电池故障诊断技术进展[J]. 储能科学与技术, 2019, 8(2):225-236. doi: 10.12028/j.issn.2095-4239.2018.0195 | 
| SU Wei, ZHONG Guobin, SHEN Jiani, et al. The progress in fault diagnosis techniques for lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(2): 225-236. doi: 10.12028/j.issn.2095-4239.2018.0195 | |
| [5] | LIU C C, WU T, HE C. Research on fault diagnosis of external short circuit of lithium battery for electric vehicle[J]. IOP Conference Series: Earth and Environmental Science, 2020, 440(3): 032106. | 
| [6] | 魏婧雯. 储能锂电池系统状态估计与热故障诊断研究[D]. 合肥: 中国科学技术大学, 2019. | 
| WEI Jingwen. Research on states estimation and thermal fault diagnostics of lithium-ion battery based energy storage system[D]. Hefei: University of Science and Technology of China, 2019. | |
| [7] | 汪玉洁. 动力锂电池的建模、状态估计及管理策略研究[D]. 合肥: 中国科学技术大学, 2017. | 
| WANG Yujie. Research on modeling, state estimation and management strategy of power lithium-ion batteries[D]. Hefei: University of Science and Technology of China, 2017. | |
| [8] | 康永哲. 锂离子电池组容量估计与故障诊断方法研究[D]. 济南: 山东大学, 2021. | 
| KANG Yongzhe. Research on the capacity estimation and fault diagnosis of lithium-ion batteries[D]. Jinan: Shandong University, 2021. | |
| [9] | LIN T T, CHEN Z Q, ZHENG C W, et al. Fault diagnosis of lithium-ion battery pack based on hybrid system and dual extended Kalman filter algorithm[J]. IEEE Transactions on Transportation Electrification, 2021, 7(1): 26-36. | 
| [10] | 刘思佳, 代高强, 周迅, 等. 基于扰动观测器的锂电池荷电状态估算方法[J]. 电源技术, 2021, 45(10): 1256-1259. doi: 10.3969/j.issn.1002-087X.2021.10.007 | 
| LIU Sijia, DAI Gaoqiang, ZHOU Xun, et al. SOC estimation method of Li-ion battery based on disturbance observer[J]. Chinese Journal of Power Sources, 2021, 45(10): 1256-1259. doi: 10.3969/j.issn.1002-087X.2021.10.007 | |
| [11] | 朱景哲, 张希, 高一钊, 等. 数据驱动的锂离子电池智能故障诊断算法[J]. 电池, 2022, 52(4):401-405. | 
| ZHU Jingzhe, ZHANG Xi, GAO Yizhao, et al. Data driven intelligent fault diagnosis algorithm for Li-ion battery[J]. Battery Bimonthly, 2022, 52(4): 401-405. | |
| [12] | 胡言庆, 杨斌, 王宇作, 等. 不同工况下功率型锂离子电池的热特性与仿真研究[J]. 电工电能新技术, 2023, 42(1):21-28. doi: 10.12067/ATEEE2204052 | 
| HU Yanqing, YANG Bin, WANG Yuzuo, et al. Thermal characteristics and simulation of power lithium-ion batteries under different operating conditions[J]. Advanced Technology of Electrical Engineering and Energy, 2023, 42(1): 21-28. doi: 10.12067/ATEEE2204052 | |
| [13] | 张扬, 李晓杰, 马兹林, 等. 锂离子电池故障诊断算法研究综述[J]. 重庆理工大学学报(自然科学), 2023, 37(9): 49-61. | 
| ZHANG Yang, LI Xiaojie, MA Zilin, et al. A review of fault diagnosis algorithms for lithium-ion batteries[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(9): 49-61. | |
| [14] | YU Y B, HUANG T F, MIN H T, et al. Co-estimation of state of charge and internal temperature of pouch lithium battery based on multi-parameter time-varying electrothermal coupling model[J]. Journal of Energy Storage, 2023, 66: 107411. | 
| [15] | HE H W, ZHANG X W, XIONG R, et al. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles[J]. Energy, 2012, 39(1): 310-318. | 
| [16] | 安诺静. 基于EKF的电动汽车用锂离子电池SOC估计方法研究[D]. 西安: 长安大学, 2020. | 
| AN Nuojing. Li-ion battery modelling and SOC estimation for electric vehicles[D]. Xi'an: Chang'an University, 2020. | |
| [17] | HE H W, XIONG R, FAN J X. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach[J]. Energies, 2011, 4(4): 582-598. | 
| [18] | FORGEZ C, DO D V, FRIEDRICH G, et al. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery[J]. Journal of Power Sources, 2010, 195(9): 2961-2968. | 
| [19] | RAO L, NEWMAN J. Heat-generation rate and general energy balance for insertion battery systems[J]. Journal of the Electrochemical Society, 1997, 144(8): 2697-2704. | 
| [20] | 孙丙香, 刘莹, 赵鑫泽, 等. 基于电热耦合模型的宽温域锂离子电池SOC/SOP联合估计[J/OL]. 储能科学与技术: 1-13 (2024-08-15)[2024-09-15]. https://link.cnki.net/doi/10.19799/j.cnki.2095-4239.2024.0659. | 
| SUN Bingxiang, LIU Ying, ZHAO Xinze, et al. Joint estimation of SOC/SOP for lithium-ion battery under wide temperature range based on electro-thermal coupling model[J/OL]. Energy Storage Science and Technology: 1-13 (2024-08-15)[2024-09-15]. https://link.cnki.net/doi/10.19799/j.cnki.2095-4239.2024.0659. | |
| [21] | KVIDAL C, PANASONIC K P J. 18650PF li-ion battery data and example FNN and LSTM neural network SOC estimator training script[J]. Mendeley Data, 2021. | 
| [22] | 袁赛, 邓志刚, 帅孟超. 大容量锂电池在线参数辨识及SOC联合估计[J]. 电气开关, 2019, 57(2): 7-11, 20. | 
| YUAN Sai, DENG Zhigang, SHUAI Mengchao. Online parameter identification and SOC joint estimation of large capacity lithium batteries[J]. Electric Switchgear, 2019, 57(2): 7-11, 20. | |
| [23] | 封居强, 伍龙, 黄凯峰, 等. 基于FFRLS和AEKF的锂离子电池SOC在线估计研究[J]. 储能科学与技术, 2021, 10(1): 242-249. doi: 10.19799/j.cnki.2095-4239.2020.0296 | 
| FENG Juqiang, WU Long, HUANG Kaifeng, et al. Online SOC estimation of a lithium-ion battery based on FFRLS and AEKF[J]. Energy Storage Science and Technology, 2021, 10(1): 242-249. doi: 10.19799/j.cnki.2095-4239.2020.0296 | |
| [24] | 田茂飞, 安治国, 陈星, 等. 基于在线参数辨识和AEKF的锂电池SOC估计[J]. 储能科学与技术, 2019, 8(4): 745-750. doi: 10.12028/j.issn.2095-4239.2019.0077 | 
| TIAN Maofei, AN Zhiguo, CHEN Xing, et al. SOC estimation of lithium battery based online parameter identification and AEKF[J]. Energy Storage Science and Technology, 2019, 8(4): 745-750. doi: 10.12028/j.issn.2095-4239.2019.0077 | |
| [25] | ZHANG H T, ZHOU M, LAN X D. State of charge estimation algorithm for unmanned aerial vehicle power-type lithium battery packs based on the extended Kalman filter[J]. Energies, 2019, 12(20): 3960. | 
| [26] | 梁奇. 基于无迹卡尔曼滤波的锂电池SOC估算[D]. 绵阳: 西南科技大学, 2018. | 
| LIANG Qi. Lithium battery SOC estimation based on unscented Kalman filter[D]. Mianyang: Southwest University of Science and Technology, 2018. | |
| [27] | GUO Y F, ZHAO Z S, HUANG L M. SoC estimation of lithium battery based on AEKF algorithm[J]. Energy Procedia, 2017, 105: 4146-4152. | 
| [28] | 乔家璐, 王顺利, 于春梅, 等. 基于加权多新息AEKF的锂电池SOC在线估算[J]. 储能科学与技术, 2021, 10(6): 2318-2325. doi: 10.19799/j.cnki.2095-4239.2021.0242 | 
| QIAO Jialu, WANG Shunli, YU Chunmei, et al. Novel multiple weighted-AEKF method for online state-of-charge estimation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2318-2325. doi: 10.19799/j.cnki.2095-4239.2021.0242 | |
| [29] | 王祥, 苏建徽, 赖纪东, 等. 基于AEKF的锂离子电池SOC估算[J]. 电子技术应用, 2023, 49(4): 57-62. | 
| WANG Xiang, SU Jianhui, LAI Jidong, et al. SOC estimation of lithium-ion battery based on AEKF[J]. Application of Electronic Technique, 2023, 49(4): 57-62. | |
| [30] | 徐智帆, 李华森, 李文院, 等. 基于递归小脑模型神经网络和卡尔曼滤波器的锂电池荷电状态预测[J]. 综合智慧能源, 2024, 46(7): 81-86. doi: 10.3969/j.issn.2097-0706.2024.07.010 | 
| XU Zhifan, LI Huasen, LI Wenyuan, et al. State of charge prediction for lithium-ion batteries based on KF-RCMNN[J]. Integrated Intelligent Energy, 2024, 46(7): 81-86. doi: 10.3969/j.issn.2097-0706.2024.07.010 | 
| [1] | FENG Jianbing, YU Tao, CHENG Lefeng. Research and prospects of self-healing control methods and their applications in metro power supply systems [J]. Integrated Intelligent Energy, 2025, 47(4): 41-62. | 
| [2] | XU Zhifan, LI Huasen, LI Wenyuan, YU Kai. State of charge prediction for lithium-ion batteries based on KF-RCMNN [J]. Integrated Intelligent Energy, 2024, 46(7): 81-86. | 
| [3] | FENG Ji, YANG Guohua, SHI Lei, PAN Huan, LU Yuxiang, ZHANG Yuanxi, LI Zhen. Research on fault diagnosis of active distribution network based on parallel fusion deep residual shrinkage network [J]. Integrated Intelligent Energy, 2024, 46(6): 8-15. | 
| [4] | REN Yiming, DU Dongsheng, DENG Xiangshuai, LIAN He, ZHAO Zhemin. Power line fault diagnosis based on GRU and GWO-KELM [J]. Integrated Intelligent Energy, 2024, 46(3): 54-62. | 
| [5] | DU Dongsheng, LIAN He, DENG Xiangshuai, REN Yiming, ZHAO Zhemin. Fault diagnosis of proton exchange membrane fuel cells based on MVMD and ISCSO-HKELM [J]. Integrated Intelligent Energy, 2024, 46(12): 17-28. | 
| [6] | XU Bo, WEI Yijun, DENG Fangming. Research on transformer fault diagnosis method based on improved TCN model [J]. Integrated Intelligent Energy, 2024, 46(11): 38-45. | 
| [7] | ZHANG Kao, HE Kailin, YANG Peihao. Research on power transformer fault diagnosis algorithm based on fuzzy reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(10): 48-55. | 
| [8] | WANG Lizhong, CHI Jianfei, DING Yeqiang, YAO Haiyan, TANG Zhipeng, WU Tongyu. Transformer fault diagnosis method based on NNTR-SMOTE and GA-XGBoost [J]. Integrated Intelligent Energy, 2024, 46(1): 84-93. | 
| [9] | LIU Yixian, WANG Yubin, YANG Qiang. High fault-tolerant distribution network state estimation method based on gated graph neural network [J]. Integrated Intelligent Energy, 2023, 45(6): 1-8. | 
| [10] | XIAO Honglei, LIU Yi, XIA Hongjun, MIAO Yufeng, YU Xiaoling, YANG Haiqi. Oil-immersed transformer fault diagnosis method based on PCA and SSA-LightGBM [J]. Integrated Intelligent Energy, 2023, 45(3): 9-16. | 
| [11] | YANG Xiaoyan, XIE Mancheng, GUO Xiaoxuan, ZHAO Yan, CHEN Chongmin, CHEN Zimin, LIAO Zhuoying. PV system fault diagnosis based on random forest classifier optimized by improved atomic orbital search algorithm [J]. Integrated Intelligent Energy, 2023, 45(10): 53-60. | 
| [12] | LONG Sicheng, HUANG Zhihong. Research on fault diagnosis method of power transformers based on multi-scale extreme fusion network [J]. Integrated Intelligent Energy, 2022, 44(9): 78-83. | 
| [13] | LI Xin, CHENG Kaijie, ZHU Liangkuan. Recursive state estimation for digitalized power grids subject to cyber attacks under Round-Robin protocol [J]. Integrated Intelligent Energy, 2022, 44(12): 1-10. | 
| [14] | WANG Yi, YANG Zhiwei, WU Po, LIU Mingyang, PEI Jiecai, LI Chunlei. State estimation for the distribution network with high-proportion distributed photovoltaic energy [J]. Integrated Intelligent Energy, 2022, 44(10): 12-18. | 
| [15] | JIA Zhijun, BAI Delong, SONG Yanjie, WANG Jianfei, LI Chunxin. Research on on-line fault diagnosis and treatment of power plant equipment based on KPCA [J]. Huadian Technology, 2021, 43(8): 48-53. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||

