综合智慧能源 ›› 2025, Vol. 47 ›› Issue (11): 14-23.doi: 10.3969/j.issn.2097-0706.2025.11.002

• 灵活资源调控与协同优化 • 上一篇    下一篇

基于自适应多任务扩散模型的风光荷场景生成方法

张志洪1(), 胡旭光1,*(), 吴恩凯2(), 张弛1(), 周诚浩1()   

  1. 1.东北大学 信息科学与工程学院,沈阳 110819
    2.辽宁省电子信息产品监督检验院,沈阳 110053
  • 收稿日期:2025-06-16 修回日期:2025-08-04 出版日期:2025-09-30
  • 通讯作者: *胡旭光(1992),男,副教授,博士,从事数模混合驱动的能源系统智能化建模、综合高效利用与优化调控等方面的研究,huxuguang@mail.neu.edu.cn
  • 作者简介:张志洪(2003),男,硕士生,从事电力系统数据挖掘与分析方面的研究,zhihongxuexi@163.com
    吴恩凯(1977),男,工程师,从事电子产品检测方面的研究,wuenkai1977@163.com
    张弛(2001),男,硕士生,从事非侵入式电力负荷监测方面的研究,2400739@stu.neu.edu.cn
    周诚浩(2002),男,硕士生,从事电力系统数据挖掘和电力系统场景生成等方面的研究,2371042@stu.neu.edu.cn
  • 基金资助:
    国家自然科学基金项目(62303103);国家自然科学基金项目(62373089);中央高校基本科研业务费专项资金项目(N25ZJL020);辽宁省自然科学基金项目(2023-BSBA-140);辽宁省教育厅科研项目(JYTQN2023161)

Wind-solar-load scenario generation method based on adaptive multi-task diffusion model

ZHANG Zhihong1(), HU Xuguang1,*(), WU Enkai2(), ZHANG Chi1(), ZHOU Chenghao1()   

  1. 1. College of Information Science and Engineering,Northeastern University,Shenyang 110819,China
    2. Liaoning Electronic Product Supervision and Inspection Institute,Shenyang 110053,China
  • Received:2025-06-16 Revised:2025-08-04 Published:2025-09-30
  • Supported by:
    National Natural Science Foundation of China(62303103);National Natural Science Foundation of China(62373089);Fundamental Research Funds for the Central Universities in ChinaFundamental Research Funds for the Central Universities in China(N25ZJL020);Natural Science Foundation of Liaoning Province(2023-BSBA-140);Scientific Research Project of Liaoning Provincial Department of Education(JYTQN2023161)

摘要:

高比例可再生能源并网背景下,精准构建能捕捉各变量动态特性及复杂关联的风光荷联合场景,是电力系统调度与控制的核心需求,为此提出了基于自适应多任务扩散模型的风光荷场景生成方法。建立了基于联合去噪网络的多任务扩散学习架构,通过联合处理多变量状态向量并融合时间信息,生成兼具物理耦合关系及时间依赖模式的真实联合场景;在此基础上,提出了基于异构数据动态特征引导的自适应扩散策略模块,通过提取生成数据的动态统计特征并据此动态调整扩散过程的噪声调度,有效表征数据的非平稳和时变动态特性;同时,引入结构化一致性引导的训练准则,在训练目标中约束边际分布与联合依赖两种数据的结构特性,实现了对模型生成过程的有效引导,提高风光荷场景的生成质量。基于IES-134标准数据集的验证表明,所提模型能够有效生成物理特性真实且统计规律合理的风光荷联合场景,可为电力系统的优化调度与风险评估提供实用工具。

关键词: 可再生能源, 风光荷联合场景, 自适应多任务扩散模型, 去噪扩散概率模型, 多任务学习, 动态特性自适应

Abstract:

In the context of high-penetration renewable energy integration, accurately constructing wind-solar-load joint scenarios that can capture the dynamic characteristics and complex correlations of various variables has emerged as a core requirement for power system scheduling and control. To this end, a generation method for wind-solar-load scenarios based on an adaptive multi-task diffusion model was proposed. A multi-task diffusion model learning architecture based on a joint denoising network was established. By jointly processing multivariate state vectors and integrating temporal information, realistic joint scenarios that integrated physical coupling relationships and temporal dependency patterns were generated. On this basis, an adaptive diffusion strategy module guided by the dynamic features of heterogeneous data was proposed. Dynamic statistical features of the generated data were extracted, and the noise scheduling of the diffusion process was dynamically adjusted accordingly, thereby effectively characterizing the non-stationary and time-varying dynamic characteristics of the data. Meanwhile, a training criterion guided by structured consistency was introduced, where the marginal distribution and joint dependency characteristics of the data structure were constrained within the training objectives. It effectively guided the model generation process and improved the quality of wind-solar-load scenario generation. Validation based on the IES-134 standard dataset demonstrated that the proposed model could effectively generate wind-solar-load joint scenarios with realistic physical characteristics and reasonable statistical patterns, providing a practical tool for optimal scheduling and risk assessment in power systems.

Key words: renewable energy, wind-solar-load joint scenarios, adaptive multi-task diffusion model, denoising diffusion probabilistic model, multi-task learning, dynamic feature adaptation

中图分类号: