Huadian Technology ›› 2021, Vol. 43 ›› Issue (7): 9-16.doi: 10.3969/j.issn.1674-1951.2021.07.002
• Energy Storage System • Previous Articles Next Articles
WEI Shuzhou1,2(), LI Bingfa3(
), SUN Chenyang3(
), ZHOU Xing3(
), WANG Yalong3(
), ZOU Yifan3(
), DENG Jingmin3(
), WANG Jinxing4,*(
)
Received:
2021-05-11
Revised:
2021-06-22
Published:
2021-07-25
Contact:
WANG Jinxing
E-mail:shuzhou.wei@chnenergy.com.cn;786088185@qq.com;1102567189@qq.com;zhoux@hebtu.edu.cn;269496271@qq.com;821418824@qq.com;834692507@qq.com;wangruoguang860928@126.com
CLC Number:
WEI Shuzhou, LI Bingfa, SUN Chenyang, ZHOU Xing, WANG Yalong, ZOU Yifan, DENG Jingmin, WANG Jinxing. Research progress of compressed air energy storage and its coupling power generation[J]. Huadian Technology, 2021, 43(7): 9-16.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.07.002
Tab.2
Comparison of different CAES and power generation technologies
类型 | 规模/MW | 效率/% | 优点 | 限制 |
---|---|---|---|---|
传统压缩空气储能 | 110.0 | 54 | 对环境影响小,投资少 | 需要高压,容量大的储能装置 |
绝热压缩空气储能 | 0.5~300.0 | >50 | 系统简单、成本低、无二次排放、冷热电三联供 | — |
蓄热式压缩空气储能 | 2.0 | >50 | 提高可再生能源利用率和压缩空气储能效率 | — |
液态空气储能 | 5.0 | >50 | 能密度大 | 大型蓄热回冷难度大、系统热损失严重、成本高、实际储能效率低 |
超临界压缩空气储能 | 10.0 | 60 | 能密度大 | 大型蓄热回冷难度大、系统热损失严重、成本高、实际储能效率低 |
[1] | International Energy Agency. World energy outlook 2018[R]Paris:2019. |
[2] | Energy Information Administration US. International Energy Outlook 2018. Washington DC:US Energy Information Administration[R], 2018 |
[3] | 国家发展改革委, 财政部, 科学技术部, 等. 关于促进储能技术与产业发展的指导意见[R], 2017. |
[4] | 林楚. 首个储能产业发展指导纲领——《关于促进储能技术与产业发展的指导意见》发布[J]. 电力系统装备, 2017,(10):38-40. |
LIN Chu. The first energy storage industry development guideline —"Guidelines on promoting energy storage technology and industry development" issuing[J]. Power System Equipment, 2017(10):38-40. | |
[5] |
LUO X, WANG J, MARK D, et al. Overview of current development in electrical energy storage technologies and the application potential in power system operation[J]. Applied Energy, 2015, 137:511-536.
doi: 10.1016/j.apenergy.2014.09.081 |
[6] | 梅生伟, 李瑞, 陈来军, 等. 先进绝热压缩空气储能技术研究进展及展望[J]. 中国电机工程学报, 2018, 8(10):2893-2907. |
MEI Shengwei, LI Rui, CHEN Laijun. An overview and outlook on advanced adiabatic compressed air energy storage technique[J]. Proceedings of the CSEE, 2018, 38(10):2893-2907. | |
[7] |
SWIDER D. Compressed air energy storage in an electricity system with significant wind power generation[J]. IEEE Transactions on Energy Conversion, 2007, 22(1):95-102.
doi: 10.1109/TEC.2006.889547 |
[8] | 余耀, 孙华, 许俊斌, 等. 压缩空气储能技术综述[J]. 装备机械, 2013(1):68-74. |
YU Yao, SUN Hua, XU Junbin, et al. Summary of compressed air energy storage technology[J]. Equipment Machinery, 2013(1):68-74. | |
[9] | 董振斌, 蒯狄正. 以压缩空气储能耦合燃机技术促进东北新能源就地消纳[J]. 电力需求侧管理, 2017(5):28-30. |
DONG Zhenbin, KUAI Dizheng. Promote new energy consumption nearby in Northeast China with compressed air energy storage coupling gas turbine technology[J]. China Academic Journal Electronic Publishing House, 2017(5):28-30. | |
[10] | 赵明, 梁俊宇, 杨延举. 考虑压缩空气储能的微电网交互仿真技术研究[J]. 电工电气, 2016,(2):19-22. |
ZHAO Ming, LIANG Junyu, YANG Yanju. Research on interactive simulation technology for micro-grid considering compressed-air energy storage[J]. China Academic Journal Electronic Publishing House, 2016,(2):19-22. | |
[11] | 文贤馗, 张世海, 王锁斌. 压缩空气储能技术及示范工程综述[J]. 应用能源技术, 2018(3):43-48. |
WEN Xiankui, ZHAGN Shihai, WANG Suobin. Summary of compressed air energy storage technology and demonstration projects[J]. China Academic Journal Electronic Publishing House, 2018(3):43-48. | |
[12] | BENJAMIN B. Technology performance report sustain smart grid program[R]. Department of Energy's National Energy Technology Laboratory, 2015. |
[13] | 何子伟, 罗马吉, 涂正凯. 等温压缩空气储能技术综述[J]. 热能动力工程, 2018, 33(2):1-6. |
HE Ziwei, LUO Maji, TU Zhengkai. Survey of the isothermal compressed air energy storage technologies[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(2):1-6. | |
[14] | 肖定垚, 王承民, 衣涛, 等. 压缩空气蓄能(CAES)系统综述[J]. 电网与清洁能源, 2014, 30(1):75-80. |
XIAO Dingyao, WANG Chengmin, YI Tao, et al. Review of compressed air energy storage system[J]. Power System and Clean Energy, 2014, 30(1):75-80. | |
[15] | NAKHAMKIN M, WOLK R, LINDEN S, et al. New compressed air energy storage concept improves the profitability of existing simple cycle, cyclecombined, energywind, landfill gas power plants[C]// ASME Turbo Expo 2004: Power for Land,Sea,and Air. |
[16] | 李斌, 陈吉玲, 李晨昕, 等. 压缩空气储能系统与火电机组的耦合方案研究[J]. 动力工程学报, 2021, 41(3):244-250. |
LI Bin, CHEN Jiling, LI Chenxin, et al. Research on coupling schemes of a compressed air energy storage system and thermal power unit[J]. Journal of Chinese Society of Power Engineering, 2021, 41(3):244-250. | |
[17] | 李丞宸, 李宇峰, 张严, 等. 一种新型蒸汽恒压抽水压缩空气储能系统及其热力学分析[J]. 西安交通大学学报, 2021(6):1-9. |
LI Chengchen, LI Yufeng, ZHANG Yan, et al. Novel steam constant-pressure pumped hydro with cpmpressed air energy storage system and thermodynamic analysis[J]. Journal of Xi'an Jiaotong University, 2021(6):1-9. | |
[18] | 张新敬, 陈海生, 刘金超, 等. 压缩空气储能技术研究进展[J]. 储能科学与技术, 2012(1):26-40. |
ZHANG Xinjing, CHEN Haisheng, LIU Jinchao, et al. Research progress in compressed air energy storage system:A review[J]. Energy Storage Science and Technology, 2012(1):26-40. | |
[19] | NAKHAMKIN M, CHIRUVOLU M, DANIEL C. Available compressed air energy storage(CAES)plant concepts[J]. Energy, 2010, 4100:81-89. |
[20] | HUANG K, QUANG K, TSENG K. Study of recycling exhaust gas energy of hybrid pneumatic power system with CFD[J]. Energy Conversion & Management, 2009, 50(5):1271-1278. |
[21] |
CREUTZIG F, PAPSON A, SCHIPPER L, et al. Economic and environmental evaluation of compressed-air cars[J]. Environmental Research Letters, 2009, 4(4):44011-44019.
doi: 10.1088/1748-9326/4/4/044011 |
[22] |
IBRAHIM H, YOUNES R, ILINCA A, et al. Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas[J]. Applied Energy, 2010, 87(5):1749-1762.
doi: 10.1016/j.apenergy.2009.10.017 |
[23] | LERCH E, SIEMENS A, PTD N. Storage of fluctuating wind energy[C]. European Conference on Power Electronics & Applications,IEEE, 2008. |
[24] |
DENHOLM P, SIOSHANSI R. The value of compressed air energy storage with wind in transmission-constrained electric power systems[J]. Energy Policy, 2009, 37(8):3149-3158.
doi: 10.1016/j.enpol.2009.04.002 |
[25] |
ZHANG X, XU Y, ZHOU X, et al. A near-isothermal expander for isothermal compressed air energy storage system[J]. Applied Energy, 2018, 225:955-964
doi: 10.1016/j.apenergy.2018.04.055 |
[26] |
BARBOUR E, WILSON I, RADCLIFFE J, et al. A review of pumped hydro energy storage development in significant international electricity markets[J]. Renewable and Sustainable Energy Reviews, 2016, 61:421-432.
doi: 10.1016/j.rser.2016.04.019 |
[27] |
LIU J, WANG J. A comparative research of two adiabatic compressed air energy storage systems[J]. Energy Conversion and Management, 2016, 108:566-578.
doi: 10.1016/j.enconman.2015.11.049 |
[28] |
MAZLOUM Y, SAYAH H, NEMER M. Dynamic modeling and simulation of an isobaric adiabatic compressed air energy storage(IA-CAES)system[J]. Journal of Energy Storage, 2017, 11:178-190.
doi: 10.1016/j.est.2017.03.006 |
[29] |
SCIACOVELLI A, LI Y, CHEN H, et al. Dynamic simulation of adiabatic compressed air energy storage(A-CAES) plant with integrated thermal storage—Link between components performance and plant performance[J]. Applied Energy, 2017, 185:16-28.
doi: 10.1016/j.apenergy.2016.10.058 |
[30] |
CHEN L, HU P, ZHAO P, et al. A novel throttling strategy for adiabatic compressed air energy storage system based on an ejector[J]. Energy Conversion and Management, 2018, 158:50-59.
doi: 10.1016/j.enconman.2017.12.055 |
[31] |
TOLA V, MELONI V, SPADACCINI F, et al. Performance assessment of adiabatic compressed air energy storage(A-CAES)power plants integrated with packed-bed thermocline storage systems[J]. Energy Conversion and Management, 2017, 151:343-356.
doi: 10.1016/j.enconman.2017.08.051 |
[32] |
BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage:Basic principles,past milestones and recent developments[J]. Applied Energy, 2016, 170:250-268.
doi: 10.1016/j.apenergy.2016.02.108 |
[33] | 董舟, 李凯, 王永生, 等. 压缩空气储能技术研究及应用现状[J]. 河北电力技术, 2019, 38(5):18-20. |
DONG Zhou, LI Kai, WANG Yongsheng, et al. Research and application status of compressed air energy storage technology[J]. Hebei Electric Power, 2019, 38(5):18-20. | |
[34] |
ROBERT M, STUART N, EMMA G, et al. Liquid air energy storage-analysis and first results from a pilot scale demonstration plant[J]. Applied Energy, 2015, 137(3):845-853.
doi: 10.1016/j.apenergy.2014.07.109 |
[35] |
GUO H, XU Y, CHEN H, et al. Thermodynamic characteristics of a novel supercritical compressed air energy storage system[J]. Energy Conversion and Management, 2016, 115:167-177.
doi: 10.1016/j.enconman.2016.01.051 |
[36] | 刘佳. 超临界空气蓄热蓄冷数值与实验研究[D]. 北京: 中国科学院工程热物理研究所, 2012. |
[1] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[2] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[3] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[4] | FENG Ji, YANG Guohua, SHI Lei, PAN Huan, LU Yuxiang, ZHANG Yuanxi, LI Zhen. Research on fault diagnosis of active distribution network based on parallel fusion deep residual shrinkage network [J]. Integrated Intelligent Energy, 2024, 46(6): 8-15. |
[5] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[6] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[7] | DING Leyan, KE Song, YANG Jun, SHI Xingye. Control strategy of virtual synchronous generators based on adaptive control parameter setting [J]. Integrated Intelligent Energy, 2024, 46(3): 35-44. |
[8] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[9] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[10] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[11] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[12] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[13] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[14] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[15] | LI Qinggen, SUN Na, DONG Haiying. Optimal configuration for shared energy storage based on improved whale optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(9): 65-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||