Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (8): 58-67.doi: 10.3969/j.issn.2097-0706.2022.08.006
• Cell System with Proton Conducting Electrolyte • Previous Articles Next Articles
CAO Jiafeng1(), LI Xinran1, SHAO Shande1, JI Yuexia1, SHAO Zongping2,*(
)
Received:
2022-04-20
Revised:
2022-07-28
Published:
2022-08-25
Contact:
SHAO Zongping
E-mail:jiafengcao@126.com;shaozp@njtech.edu.cn
CLC Number:
CAO Jiafeng, LI Xinran, SHAO Shande, JI Yuexia, SHAO Zongping. Review on the study of protonic ceramic fuel cells' stability[J]. Integrated Intelligent Energy, 2022, 44(8): 58-67.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.08.006
[1] |
OMER A M. Energy,environment and sustainable development[J]. Renewable and Sustainable Energy Reviews, 2008, 12: 2265-2300.
doi: 10.1016/j.rser.2007.05.001 |
[2] | CAO J F, JI Y X, SHAO Z P. Perovskites for protonic ceramic fuel cells:A review[J]. Energy & Environmental Science, 2022, 15: 2200-2232. |
[3] |
SUMI H, SHIMADA H, YAMAGUCHI Y, et al. Comparison of electrochemical impedance spectra for electrolyte-supported solid oxide fuel cells(SOFCs) and protonic ceramic fuel cells (PCFCs)[J]. Scientific Reports, 2021, 11: 10622.
doi: 10.1038/s41598-021-90211-9 |
[4] |
FERGUSON K, DUBOIS A, ALBRECHT K, et al. High performance protonic ceramic fuel cell systems for distributed power generation[J]. Energy Conversion and Management, 2021, 248: 114763.
doi: 10.1016/j.enconman.2021.114763 |
[5] | ZHANG H, ZHOU Y C, PEI K, et al. An efficient and durable anode for ammonia protonic ceramic fuel cells[J]. Energy & Environmental Science, 2022, 15: 287-295. |
[6] | KIM J H, HONG J, LIM D K, et al. Water as hole-predatory instrumental to create metal nanoparticles on triple-conducting oxides[J]. Energy & Environmental Science, 2022, 15: 1097-1105. |
[7] |
PARK J S, CHOI H J, HAN G D, et al. High-performance protonic ceramic fuel cells with a PrBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode with palladium-rich interface coating[J]. Journal of Power Sources, 2021, 482: 229043.
doi: 10.1016/j.jpowsour.2020.229043 |
[8] |
YIN Y R, YU S F, DAI H L, et al. Triggering interfacial activity of the traditional La0.5Sr0.5MnO3 cathode with co-doping for proton-conducting solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2022, 10: 1726-1734.
doi: 10.1039/D1TA09450E |
[9] |
MEDVEDEV D, MURASHKINA A, PIKALOVA E, et al. BaCeO3: Materials development, properties and application[J]. Progress in Materials Science, 2014, 60: 72-129.
doi: 10.1016/j.pmatsci.2013.08.001 |
[10] |
ZUO C D, ZHA S W, LIU M L, et al. Ba(Zr0.1Ce0.7Y0.2)O3-δ as an electrolyte for low-temperature solid-oxide fuel cells[J]. Advanced Materials, 2006, 18: 3318-3320.
doi: 10.1002/adma.200601366 |
[11] |
XU X, BI L, ZHAO X S. Highly-conductive proton-conducting electrolyte membranes with a low sintering temperature for solid oxide fuel cells[J]. Journal of Membrane Science, 2018, 558: 17-25.
doi: 10.1016/j.memsci.2018.04.037 |
[12] |
GUO Y M, LIN Y, RAN R, et al. Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3-δ (0≤y≤0.8) for fuel cell applications[J]. Journal of Power Sources, 2009, 193: 400-407.
doi: 10.1016/j.jpowsour.2009.03.044 |
[13] |
ZHOU C, SHEN X X, LIU D L, et al. Low thermal-expansion and high proton uptake for protonic ceramic fuel cell cathode[J]. Journal of Power Sources, 2022, 530: 231321.
doi: 10.1016/j.jpowsour.2022.231321 |
[14] |
ZHOU M Y, LIU Z J, CHEN M L, et al. Electrochemical performance and chemical stability of proton-conducting BaZr0.8-xCexY0.2O3-δ electrolytes[J]. Journal of the American Ceramic Society, 2022, DOI: 10.1111/jace.18500.
doi: 10.1111/jace.18500 |
[15] |
CHEN M L, ZHOU M Y, LIU Z J, et al. A comparative investigation on protonic ceramic fuel cell electrolytes BaZr0.8Y0.2O3-δ and BaZr0.1Ce0.7Y0.2O3-δ with NiO as sintering aid[J]. Ceramics International, 2022, 48: 17208-17216.
doi: 10.1016/j.ceramint.2022.02.278 |
[16] |
YANG L, WANG S Z, BLINN K, et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-δ[J]. Science, 2009, 326: 126-130.
doi: 10.1126/science.1174811 |
[17] |
HE F, TENG Z Y, YANG G M, et al. Manipulating cation nonstoichiometry towards developing better electrolyte for self-humidified dual-ion solid oxide fuel cells[J]. Journal of Power Sources, 2020, 460:228105.
doi: 10.1016/j.jpowsour.2020.228105 |
[18] | GUO R, LI D D, GUAN R, et al. Sn-Dy-Cu triply doped BaZr0.1Ce0.7Y0.2O3-δ: A chemically stable and highly proton-conductive electrolyte for low-temperature solid oxide fuel cells[J]. ACS Sustainable Chemistry & Engineering, 2022, 10: 5352-5362. |
[19] |
DUAN C C, TONG J H, SHANG M, et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures[J]. Science, 2015, 349: 1321-1326.
doi: 10.1126/science.aab3987 |
[20] | DUAN C C, HOOK D, CHEN Y C, et al. Zr and Y co-doped perovskite as a stable, high performance cathode for solid oxide fuel cells operating below 500 ℃[J]. Energy & Environmental Science, 2017, 10: 176-182. |
[21] |
DUAN C C, KEE R, ZHU H Y, et al. Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production[J]. Nature Energy, 2019, 4: 230-240.
doi: 10.1038/s41560-019-0333-2 |
[22] |
DUAN C C, KEE R J, ZHU H Y, et al. Highly durable, coking and sulfur tolerant,fuel-flexible protonic ceramic fuel cells[J]. Nature, 2018, 557: 217-222.
doi: 10.1038/s41586-018-0082-6 |
[23] |
HUAN D M, ZHANG L, LI X Y, et al. A durable ruddlesden-popper cathode for protonic ceramic fuel cells[J]. ChemSusChem, 2020, 13: 4994-5003.
doi: 10.1002/cssc.202001168 |
[24] |
HU D Y, KIM J Y, NIU H J, et al. High-performance protonic ceramic fuel cell cathode using protophilic mixed ion and electron conducting material[J]. Journal of Materials Chemistry A, 2022, 10: 2559-2566.
doi: 10.1039/D1TA07113K |
[25] |
XIE Y, SHI N, HUAN D M, et al. A stable and efficient cathode for fluorine-containing proton-conducting solid oxide fuel cells[J]. ChemSusChem, 2018, 11:3423-3430.
doi: 10.1002/cssc.201801193 |
[26] |
BERNUY-LOPEZ C, RIOJA-MONLLOR L, NAKAMURA T, et al. Effect of cation ordering on the performance and chemical stability of layered double perovskite cathodes[J]. Materials, 2018, 11: 196.
doi: 10.3390/ma11020196 |
[27] |
SONG Y F, LIU J P, WANG Y H, et al. Nanocomposites: A new opportunity for developing highly active and durable bifunctional air electrodes for reversible protonic ceramic cells[J]. Advanced Energy Materials, 2021, 11:2101899.
doi: 10.1002/aenm.202101899 |
[28] | SHI H G, SU C, XU X M, et al. Building ruddlesden-popper and single perovskite nanocomposites:A new strategy to develop high-performance cathode for protonic ceramic fuel cells[J]. Small, 2021, 17: e2101872. |
[29] |
SONG Y F, CHEN Y B, WANG W, et al. Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode[J]. Joule, 2019, 3:2842-2853.
doi: 10.1016/j.joule.2019.07.004 |
[30] |
LIANG M Z, ZHU Y J, SONG Y F, et al. A new durable surface nanoparticles-modified perovskite cathode for protonic ceramic fuel cells from selective cation exsolution under oxidizing atmosphere[J]. Advanced Materials, 2022, 34: 2106379.
doi: 10.1002/adma.202106379 |
[31] |
ZHANG Y, SHEN L Y, WANG Y H, et al. Enhanced oxygen reduction kinetics of IT-SOFC cathode with PrBaCo2O5+δ/Gd0.1Ce1.9O2-δ coherent interface[J]. Journal of Materials Chemistry A, 2022, 10: 3495-3505.
doi: 10.1039/D1TA09615J |
[32] | LI Y T, TIAN Y F, LI J, et al. Sr-free orthorhombic perovskite Pr0.8Ca0.2Fe0.8Co0.2O3-δ as a high-performance air electrode for reversible solid oxide cell[J]. Journal of Power Sources, 2022, 528. |
[33] | SAQIB M, CHOI I G, BAE H, et al. Transition from perovskite to misfit-layered structure materials: A highly oxygen deficient and stable oxygen electrode catalyst[J]. Energy & Environmental Science, 2021, 14:2472-2484. |
[34] |
SAFIAN S D, MALEK N IABD, JAMIL Z, et al. Study on the surface segregation of mixed ionic-electronic conductor lanthanum-based perovskite oxide La1-xSrxCo1-yFeyO3-δ materials[J]. International Journal of Energy Research, 2022, 46: 7101-7117.
doi: 10.1002/er.7733 |
[35] |
TSVETKOV N, LU Q Y, SUN L X, et al. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface[J]. Nature Materials, 2016, 15:1010-1016.
doi: 10.1038/nmat4659 |
[36] |
ZHANG Y, CHEN B, GUAN D Q, et al. Thermal-expansion offset for high-performance fuel cell cathodes[J]. Nature, 2021, 591: 246-251.
doi: 10.1038/s41586-021-03264-1 |
[37] |
CHOI S, KUCHARCZYK C J, LIANG Y G, et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells[J]. Nature Energy, 2018, 3:202-210.
doi: 10.1038/s41560-017-0085-9 |
[38] |
BIAN W J, WU W, WANG B M, et al. Revitalizing interface in protonic ceramic cells by acid etch[J]. Nature, 2022, 604: 479-485.
doi: 10.1038/s41586-022-04457-y |
[39] |
DAILLY J L, ANCELIN M, MARRONY M. Long term testing of BCZY-based protonic ceramic fuel cell PCFC: Micro-generation profile and reversible production of hydrogen and electricity[J]. Solid State Ionics, 2017, 306: 69-75.
doi: 10.1016/j.ssi.2017.03.002 |
[40] | BAE K, LEE S, JANG D Y, et al. High-performance protonic ceramic fuel cells with thin-film yttrium-doped barium cerate-zirconate electrolytes on compositionally gradient anodes[J]. ACS Applied Materials & Interfaces, 2016, 8: 9097-9103. |
[41] |
ZHOU Y, GUAN X F, ZHOU H, et al. Strongly correlated perovskite fuel cells[J]. Nature, 2016, 534: 231-234.
doi: 10.1038/nature17653 |
[1] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[2] | HU Chong, ZHAO Yuan, RAZA Ali, CHEN Daifen. Simulation and optimization for the PEMFC based on single-cell stack structure [J]. Integrated Intelligent Energy, 2022, 44(8): 91-96. |
[3] | XU Yangsen, ZHANG Lei, BI Lei. Development and challenges of intermediate-temperature proton-conducting solid oxide fuel cells [J]. Integrated Intelligent Energy, 2022, 44(8): 68-74. |
[4] | YANG Ying, ZHANG Yanxiang, YAN Mufu. Research progress on preparation methods of medium and low temperature SOFC electrolytes [J]. Integrated Intelligent Energy, 2022, 44(8): 50-57. |
[5] | GAO Yuan, LI Zhi, LI Jiahong, GAO Jiutao, LI Chengxin, LI Changjiu. Progress in technologies of metal-supported solid oxide fuel cells [J]. Integrated Intelligent Energy, 2022, 44(8): 1-24. |
[6] | Lidong ZHANG, Yibing CHEN, Ming GONG, Hualiang ZHAO, Xin WANG, Hongyan HUANG. Process simulation of factors affecting proton exchange membrane water electrolysis for hydrogen production [J]. Integrated Intelligent Energy, 2022, 44(5): 88-94. |
[7] | Xinye DU, Jianxi WANG, Yonghui SUN, Yi HE, Pengpeng WU, Wei ZHOU. Optimal planning of hybrid energy storage systems in microgrids considering seawater desalination and hydrogen production [J]. Integrated Intelligent Energy, 2022, 44(5): 49-55. |
[8] | JIANG Wenkun, HAN Yinghui, XUE Zhiwen, ZHU Yongqi, XU Yanmei. Energy storage technologies and their applications in multi-energy complementary power system [J]. Integrated Intelligent Energy, 2022, 44(1): 63-71. |
[9] | YU Xiaobao, ZHENG Dandan, YANG Kang, KONG Jie, ZHANG Tianhao. Opportunities and challenges faced by energy and power industry with the goal of carbon neutrality and carbon peak [J]. Huadian Technology, 2021, 43(6): 21-32. |
[10] | SUN Hao, FU Jinzhou, YAN Xiaohu, HE Guoxin, CHEN Yonghua. Research and development of integrated community energy simulation-optimization system [J]. Huadian Technology, 2021, 43(4): 8-13. |
[11] | ZHOU Yufeng, WANG Xuetao, LIANG Yanzheng, LUO Shaofeng. Research progress of Fe based catalysts for hydrogen-rich gas production from biomass catalytic gasification [J]. Huadian Technology, 2021, 43(10): 31-42. |
[12] |
GUO Xiaoning,YIN Jianlun,PANG Jiefeng,CUI Longwei,WANG Qunwei,WEI Xin.
Design and implementation of a universal display terminal for protection devices |
[13] |
TAO Li1,ZHU Xiaoguang2,WANG Shanhong3.
Design of substation portable inspection terminal interface
[J]. Huadian Technology, 2016, 38(6): 60-62.
|
[14] |
WANG Shandan1, SHEN Zhongtao2.
The study of flexible grid interface equipment for distributed photovoltaic power generation
[J]. Huadian Technology, 2016, 38(4): 68-71.
|
[15] |
LIU Sheng.
Interface design for ventilation system of S109FA gassteam combined cycle unit [J]. Huadian Technology, 2015, 37(5): 61-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||