Huadian Technology ›› 2021, Vol. 43 ›› Issue (6): 79-85.doi: 10.3969/j.issn.1674-1951.2021.06.010
• Carbon Sequestration and Utilization • Previous Articles Next Articles
HU Xiaofu(), WANG Kailiang, SHEN Jianyong, BAI Yongfeng
Received:
2021-05-08
Revised:
2021-06-08
Published:
2021-06-25
CLC Number:
HU Xiaofu, WANG Kailiang, SHEN Jianyong, BAI Yongfeng. Research progress of CO2 resource utilization based on biological carbon sequestration technology[J]. Huadian Technology, 2021, 43(6): 79-85.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.06.010
[1] | 周文广, 阮榕生. 微藻生物固碳技术进展和发展趋势[J]. 中国科学, 2014,44(1):63-78. |
ZHOU Wenguang, RUAN Rongsheng. Biological mitigation of carbon dioxide via microalgae:Recent development and future direction[J]. Scientia Sinica(Chimica), 2014,44(1):63-78. | |
[2] | 王凯, 贺明丽, 王梦, 等. 以CO2为原料的绿色生物制造[J]. 化工进展, 2019,38(1):538-544. |
WANG Kai, HE Mingli, WANG Meng, et al. Green biological manufacture with CO2 as raw material[J]. Chemical Industry and Engineering Progress, 2019,38(1):538-544. | |
[3] | 赵毅, 钱新凤, 张自丽. 二氧化碳资源化技术分析及应用前景[J]. 科学技术与工程, 2014,14(16):175-183. |
ZHAO Yi, QIAN Xinfeng, ZHANG Zili. Technical analysis and application prospect on resource utilization carbon dioxide[J]. Science Technology and Engineering, 2014,14(16):175-183. | |
[4] | 蒋海明, 季祥, 司万童, 等. 生物电化学系统还原二氧化碳产甲烷研究进展[J]. 土木建筑与环境工程, 2015,37(3):127-133. |
JIANG Haiming, JI Xiang, SI Wantong, et al. Literature review of reduction of carbon dioxide to methane with bioelectrochemical systems[J]. Journal of Civil and Environmental Engineering, 2015,37(3):127-133. | |
[5] | 郭利, 苗利宁, 刘文强, 等. CO2资源化利用的研究进展[J]. 化学工程, 2019,47(1):6-9. |
GUO Li, MIAO Lining, LIU Wenqiang, et al. Research progress of CO2 resoure utilization[J]. Chemical Engineering (China), 2019,47(1):6-9. | |
[6] | 朱华伟, 张延平, 李寅. 微生物电合成-电能驱动的CO2固定[J]. 中国科学, 2016,46(12):1388-1399. |
ZHU Huawei, ZHANG Yanping, LI Yin. Microbial electrosynjournal:CO2 fixation driven by electricity[J]. Science in China(Series C), 2016,46(12):1388-1399. | |
[7] | 孙中亮. 低浓度二氧化碳培养微藻的吸收强化和烟道气组分调变[D]. 北京:中国科学院过程工程研究所, 2015. |
[8] |
CHISTI Y. Biodiesel from microalgae[J]. Biotechnology Advances, 2007,25(3):294-306.
doi: 10.1016/j.biotechadv.2007.02.001 |
[9] | BECKER E W. Microalgae:Biotechnology and microbiology[M]. England: Cambridge University Press, 1994. |
[10] | 孔乙杰, 王研, 王蕊. 微藻固定CO2协同处理污水研究进展[J]. 轻工科技, 2019,35(8):112-113. |
[11] |
TREDICI M R. Photobiology of microalgae mass cultures: Understanding the tools for the next green revolution[J]. Biofuels, 2010,1(1):143-162.
doi: 10.4155/bfs.09.10 |
[12] | LAM M, LEE K. Cultivation of Chlorella vulgaris in a pilot-scale sequential-baffled column photobioreactor for biomass and biodiesel production[J]. Energy Conversion and Management, 2014(88):399-410. |
[13] | 李静雅. 微藻光生物反应器开发及正渗透藻水分离的研究[D]. 杭州:浙江大学, 2018. |
[14] | 杨忠华, 杨改, 李方芳, 等. 利用微藻固定实现减排的研究进展[J]. 生物加工过程, 2011(9):66-75. |
YANG Zhonghua, YANG Gai, LI Fangfang, et al. Recent progress in fixation of CO2 with microalgae for carbon emission reduction[J]. Chinese Journal of Bioprocess Engineering, 2011(9):66-75. | |
[15] |
EDUARDO J, CARLOS H, FRANCO T. Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactor[J]. Chemical Engineering and Processing, 2009,48:306-310.
doi: 10.1016/j.cep.2008.04.007 |
[16] |
YUE L, CHEN W. Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae[J]. Energy Conversion and Management, 2005,46:1868-1876.
doi: 10.1016/j.enconman.2004.10.010 |
[17] | KAJIWARA S, YAMADA H, OHKUNI N, et al. Design of the bioreactor for carbon dioxide fixation by Synechococcus PCC7942[J]. Energy Conversion and Management, 1997,38:529-532. |
[18] |
PIRES J, ALVIM F M, MARTINS F, et al. Carbon dioxide capture from flue gases using microalgae:Engineering aspects and biorefinery concept[J]. Renewable and Sustainable Energy Reviews, 2012,16:3043-3053.
doi: 10.1016/j.rser.2012.02.055 |
[19] |
CHENG L, ZHANG L, CHEN H, et al. Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor[J]. Separation and Purification Technology, 2006,50:324-329.
doi: 10.1016/j.seppur.2005.12.006 |
[20] | 高春燕, 刘慧, 叶乃好, 等. 大型海藻发酵生产甲烷技术研究[J]. 中外能源, 2011(4):27-35. |
GAO Chunyan, LIU Hui, YE Naihao, et al. A study on technologies for producing methane on a large scale by fermentation of algae[J]. Sino-Global Energy, 2011(4):27-35. | |
[21] | 孙书晶, 骆立钢, 曾琴. 藻类生物质气化产甲烷研究进展[J]. 化学工程与装备, 2017(6):219-220. |
[22] | 嵇磊, 张利雄, 姚志龙, 等. 利用藻类生物质制备生物燃料研究进展[J]. 石油学报(石油加工), 2007,23(6):1-5. |
JI Lei, ZHANG Lixiong, YAO Zhilong, et al. Review on the producing bio-fuel from microalgae[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2007,23(6):1-5. | |
[23] | 陆小青. 藻类生物燃料的研究进展[J]. 城市道桥与防洪, 2012(6):393-398. |
LU Xiaoqing. Study of algae biofuels[J]. Urban Roads Bridges & Flood Control, 2012(6):393-398. | |
[24] | 缪晓玲, 吴庆余. 微藻生物质可再生能源的开发利用[J]. 可再生能源, 2003(3):13-16. |
MIAO Xiaoling, WU Qingyu. Exploitation of biomass renewable energy sources of microalgae[J]. Renewable Energy Resources, 2003(3):13-16. | |
[25] | 程军, 张曦, 刘建峰, 等. 镍基介孔Y催化微藻生物柴油制航空燃油[J]. 太阳能学报, 2020,41(5):224-228. |
CHENG Jun, ZHANG Xi, LIU Jianfeng, et al. Catalytic hydroprocessing of microalgae biodiesel to renewable jet fuels over Ni/MESO-Y difunctional catalyst[J]. Acta Energiae Solaris Sinica, 2020,41(5):224-228. | |
[26] | 苗长林, 吕鹏梅, 王忠铭, 等. 微波辅助组合离子液体直接制备微藻生物柴油[J]. 太阳能学报, 2021,42(2):233-238. |
MIAO Changlin, LYU Pengmei, WANG Zhongming, et al. Preparation of microalgae biodiesel by direct transesterification under microwave-assisted ionic liquid composite conditions[J]. Acta Energiae Solaris Sinica, 2021,42(2):233-238. | |
[27] | 张志忍. 模拟微重力下利用二氧化碳培养小球藻的研究[D]. 武汉:武汉工程大学, 2017. |
[28] | 赵阳国, 师振华, 王亚洁, 等. 利用微拟球藻去除污水中氮磷及生产富油生物质[J]. 环境工程学报, 2016,10(5):2367-2374. |
ZHAO Yangguo, SHI Zhenhua, WANG Yajie, et al. Removal of nitrogen and phosphorus in urban sewage and simultaneous production of oil-rich biomass by nannochloropsis sp[J]. Chinese Journal of Environmental Engineering, 2016,10(5):2367-2374. | |
[29] |
CHENG S A, XING D F, CALL D F, et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmental Science & Technology, 2009,43(10):3953-3958.
doi: 10.1021/es803531g |
[30] |
NICHOLS E M, GALLAGHER J J, LIU C, et al. Hybrid bioinorganic approach to solar-to-chemical conversion[J]. Proc Natl Acad Sci USA, 2015,112:11461-11466.
doi: 10.1073/pnas.1508075112 |
[31] |
GANIGUE R, PUIG S, VILANOVA P, et al. Microbial electrosynjournal of butyrate from carbon dioxide[J]. Chem Commun, 2015,51:3235-3238.
doi: 10.1039/C4CC10121A |
[32] |
HICKS N, VIK U, TAYLOR P, et al. Using prokaryotes for carbon capture storage[J]. Trends in Biotechnology, 2017,35(1):22-32.
doi: 10.1016/j.tibtech.2016.06.011 |
[33] | MU A, MOREAU J. The geomicrobiology of CO2 geosequestration:A focused review on prokaryotic community responses to field-scale CO2 injection[J]. Frontiers in Microbiology, 2015(6) :263. |
[34] |
YANAGAWA K, MORONO Y, BEER D, et al. Metabolically active microbial communities in marine sediment under high-CO2 and low-pH extremes[J]. The ISME Journal, 2013,7(3):555-567.
doi: 10.1038/ismej.2012.124 |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[3] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[4] | HE Shuwei, HAN Yinghui, XU Wenbin, ZHANG Yuanxun, SHAN Yulong, YU Yunbo. Simulation for CO2 emissions from private vehicles in Beijing under different energy strategies [J]. Integrated Intelligent Energy, 2023, 45(8): 26-35. |
[5] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[6] | TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality [J]. Integrated Intelligent Energy, 2023, 45(8): 53-63. |
[7] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[8] | LI Bohang, LI Hongzhong, ZHANG Minyuan. Low-carbon economic dispatch of integrated energy systems considering load characteristics [J]. Integrated Intelligent Energy, 2023, 45(8): 72-79. |
[9] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[10] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[11] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
[12] | ZHAO Guotao, QIAN Guoming, SUN Yanbing, DING Quan, ZHU Haidong. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation [J]. Integrated Intelligent Energy, 2023, 45(6): 73-80. |
[13] | LIU Ziqi, SU Tingting, HE Jiayang, WANG Yu. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(6): 9-16. |
[14] | ZHOU Shuxin, FAN Huailin, HU Xun. Preparation of biomass-based carbon materials and its application as electrodes in supercapacitors [J]. Integrated Intelligent Energy, 2023, 45(5): 1-12. |
[15] | FAN Dekai, FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun. Review on the preparation of high-value chemicals from cellulose pyrolysis [J]. Integrated Intelligent Energy, 2023, 45(5): 24-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||