Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (6): 30-36.doi: 10.3969/j.issn.2097-0706.2025.06.004
• Optimal Control on Integrated Energy Systems • Previous Articles Next Articles
ZHAN Guohua1(), ZHANG Xianyong1,*(
), WEI Shengying1, ZHANG Xiaoshun2, LI Li1
Received:
2024-06-03
Revised:
2024-10-08
Published:
2025-06-25
Contact:
ZHANG Xianyong
E-mail:zhanguohua2262@163.com;zhangfriendjun@163.com
Supported by:
CLC Number:
ZHAN Guohua, ZHANG Xianyong, WEI Shengying, ZHANG Xiaoshun, LI Li. A prediction method for power grid carbon emission factor based on T-Graphormer[J]. Integrated Intelligent Energy, 2025, 47(6): 30-36.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.06.004
Table 2
Comparison of predicted results
模型 | 3 h | 6 h | 12 h | 24 h | 平均值 | |||||
---|---|---|---|---|---|---|---|---|---|---|
STGCN | 0.163 2 | 0.191 6 | 0.191 7 | 0.221 6 | 0.197 0 | 0.226 0 | 0.213 5 | 0.240 6 | 0.191 4 | 0.220 0 |
STGCN-Cheb | 0.156 6 | 0.187 7 | 0.189 0 | 0.219 1 | 0.196 2 | 0.224 7 | 0.206 0 | 0.236 0 | 0.186 9 | 0.216 9 |
ASTGCN | 0.143 4 | 0.171 3 | 0.186 5 | 0.211 1 | 0.194 8 | 0.223 3 | 0.203 1 | 0.230 4 | 0.182 0 | 0.208 9 |
T-Graphormer | 0.135 2 | 0.164 1 | 0.168 4 | 0.199 3 | 0.193 9 | 0.222 8 | 0.198 0 | 0.225 8 | 0.172 7 | 0.201 8 |
[1] | 康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的“碳视角”:科学问题与研究框架[J]. 电网技术, 2022, 46(3): 821-833. |
KANG Chongqing, DU Ershun, LI Yaowang, et al. Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power System Technology, 2022, 46(3): 821-833. | |
[2] | 孔慧超, 黄学劲, 王文钟, 等. 园区受端新型电力系统电力电量再平衡方法[J]. 综合智慧能源, 2024, 46(2):68-74. |
KONG Huichao, HUANG Xuejin, WANG Wenzhong, et al. Electric power and energy rebalancing method for new power systems at receiving ends of industrial parks[J]. Integrated Intelligent Energy, 2024, 46(2): 68-74. | |
[3] | 喻小宝, 赵雯婧, 孙艺新. 计及双重不确定性的综合能源系统运行优化模型研究[J]. 综合智慧能源, 2023, 45(10): 10-17. |
YU Xiaobao, ZHAO Wenjing, SUN Yixin. Integrated energy system operation optimization model considering double uncertainties[J]. Integrated Intelligent Energy, 2023, 45(10): 10-17. | |
[4] | RE100 Members. Over 400 RE100 companies have made a commitment to go '100% renewable'[EB/OL]. (2020-12-08)[2024-06-01]. https://www.there100.org/re100-members. |
[5] | 魏夕凯, 谭效时, 林明, 等. 2005—2035年全国电网碳排放因子的计算与预测[J]. 综合智慧能源, 2024, 46(3): 72-78. |
WEI Xikai, TAN Xiaoshi, LIN Ming, et al. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035[J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. | |
[6] | SUN W, REN C M. Short-term prediction of carbon emissions based on the EEMD-PSOBP model[J]. Environmental Science and Pollution Research International, 2021, 28(40): 56580-56594. |
[7] | 张宁, 李姚旺, 黄俊辉, 等. 电力系统全环节碳计量方法与碳表系统[J]. 电力系统自动化, 2023, 47(9): 2-12. |
ZHANG Ning, LI Yaowang, HUANG Junhui, et al. Carbon measurement method and carbon meter system for whole chain of power system[J]. Automation of Electric Power Systems, 2023, 47(9): 2-12. | |
[8] | 杨雨瑶, 潘峰, 钟立华, 等. 基于神经网络的电力系统节点碳排放因子预测方法[J]. 广东电力, 2023, 36(10): 2-9. |
YANG Yuyao, PAN Feng, ZHONG Lihua, et al. Study on prediction method of node carbon emission factors in power system based on neural network[J]. Guangdong Electric Power, 2023, 36(10): 2-9. | |
[9] | 雷景生, 李冉, 杨胜英, 等. 融合社交信息的多图神经网络会话推荐方法[J]. 计算机工程与应用, 2023, 59(15): 264-273. |
LEI Jingsheng, LI Ran, YANG Shengying, et al. Session-based recommendation based on multi-graph neural network incorporating social information[J]. Computer Engineering and Applications, 2023, 59(15): 264-273. | |
[10] | SHUI Z R, KARYPIS G. Heterogeneous molecular graph neural networks for predicting molecule properties[C]//Proceedings of 2020 IEEE International Conference on Data Mining (ICDM). IEEE, 2020: 492-500. |
[11] | 姜山, 丁治明, 徐馨润, 等. 面向路网交通流态势预测的图神经网络模型[J]. 计算机科学与探索, 2021, 15(6): 1084-1091. |
JIANG Shan, DING Zhiming, XU Xinrun, et al. Graph neural network for traffic flow situation prediction[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1084-1091. | |
[12] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22)[2024-06-01]. https://arxiv.org/abs/1609.02907v4. |
[13] | 朱子意, 孙晓燕, 柳先彪, 等. 基于相似用电单元及图卷积神经网络的电力负荷预测[J]. 电力科学与工程, 2023, 39(7): 9-23. |
ZHU Ziyi, SUN Xiaoyan, LIU Xianbiao, et al. Power load forecasting based on similar power units and graph convolution neural network[J]. Electric Power Science and Engineering, 2023, 39(7): 9-23. | |
[14] | VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J/OL]. ICLR,(2018-02-04)[2024-06-01]. https://arxiv.org/abs/1710.10903. |
[15] | 荣沛, 苏凡军. 基于知识图注意网络的个性化推荐算法[J]. 计算机应用研究, 2021, 38(2): 398-402. |
RONG Pei, SU Fanjun. Personalized recommendation algorithm based on knowledge graph attention network[J]. Application Research of Computers, 2021, 38(2): 398-402. | |
[16] | YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting[J]. ArXiv e-Prints, 2017: arXiv: 1709.04875. |
[17] | GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 922-929. |
[18] | 林琳, 邓国新, 樊浩. 基于天气模式识别与时空图神经网络的新能源发电功率预测[J]. 电气自动化, 2023, 45(3): 30-33. |
LIN Lin, DENG Guoxin, FAN Hao. New energy generation power prediction based on weather pattern recognition and spatiotemporal graph neural network[J]. Electrical Automation, 2023, 45(3): 30-33. | |
[19] | YAN H Y, MA X L, PU Z Y. Learning dynamic and hierarchical traffic spatiotemporal features with transformer[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 22386-22399. |
[20] | YING C, CAI T, LUO S, et al. Do transformers really perform badly for graph representation?[C]// Advances in Neural Information Processing Systems, Cambridge, MA: MITPress, 2021:28877-28888. |
[21] | 周天睿, 康重庆, 徐乾耀, 等. 电力系统碳排放流的计算方法初探[J]. 电力系统自动化, 2012, 36(11): 44-49. |
ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Preliminary investigation on a method for carbon emission flow calculation of power system[J]. Automation of Electric Power Systems, 2012, 36(11): 44-49. | |
[22] | RAMCHOUN H, AMINE M, IDRISSI J, et al. Multilayer perceptron: architecture optimization and training[J]. International Journal of Interactive Multimedia and Artificial Intelligence, 2016, 4(1): 26. |
[23] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017,30: 5998-6008. |
[24] | HE K M, ZHANG X G, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016: 770-778. |
[1] | YIN Linfei, ZHANG Yiling. Photovoltaic output prediction based on multi-convolutional combined large model [J]. Integrated Intelligent Energy, 2025, 47(4): 63-72. |
[2] | ZENG Haozheng, YIN Linfei. Research on multi-objective optimal economic dispatch of power systems based on NSMFO-BERT algorithm [J]. Integrated Intelligent Energy, 2025, 47(4): 98-106. |
[3] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[4] | CHEN Yang, WENG Weijie, HUANG Jiangdong, ZOU Tao, JIANG Wei. Research on multi-path balancing topology based on transformers [J]. Integrated Intelligent Energy, 2024, 46(4): 68-77. |
[5] | YIN Linfei, ZHAO Yiran. Stability control of multiband power system stabilizer based on Transformer-embedded deep deterministic policy gradient method [J]. Integrated Intelligent Energy, 2024, 46(12): 1-9. |
[6] | SHENG Ruixiang, ZHANG Xiaoyu. Photovoltaic power forecasting model based on probabilistic TCN-Transformer [J]. Integrated Intelligent Energy, 2024, 46(11): 10-18. |
[7] | ZHAO Guizhong, HUANG Miaohua. An information extraction method for electric power accidents based on BERT-BiLSTM-CRF model [J]. Integrated Intelligent Energy, 2024, 46(11): 19-28. |
[8] | XU Bo, WEI Yijun, DENG Fangming. Research on transformer fault diagnosis method based on improved TCN model [J]. Integrated Intelligent Energy, 2024, 46(11): 38-45. |
[9] | ZHANG Kao, HE Kailin, YANG Peihao. Research on power transformer fault diagnosis algorithm based on fuzzy reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(10): 48-55. |
[10] | WANG Lizhong, CHI Jianfei, DING Yeqiang, YAO Haiyan, TANG Zhipeng, WU Tongyu. Transformer fault diagnosis method based on NNTR-SMOTE and GA-XGBoost [J]. Integrated Intelligent Energy, 2024, 46(1): 84-93. |
[11] | LIU Yixian, WANG Yubin, YANG Qiang. High fault-tolerant distribution network state estimation method based on gated graph neural network [J]. Integrated Intelligent Energy, 2023, 45(6): 1-8. |
[12] | XIAO Honglei, LIU Yi, XIA Hongjun, MIAO Yufeng, YU Xiaoling, YANG Haiqi. Oil-immersed transformer fault diagnosis method based on PCA and SSA-LightGBM [J]. Integrated Intelligent Energy, 2023, 45(3): 9-16. |
[13] | YIN Yuchen, LIU Yuhang, MA Yuanqian, LEI Yi. Integrated energy demand forecasting for the park based on the Transformer algorithm [J]. Integrated Intelligent Energy, 2023, 45(10): 61-69. |
[14] | LONG Sicheng, HUANG Zhihong. Research on fault diagnosis method of power transformers based on multi-scale extreme fusion network [J]. Integrated Intelligent Energy, 2022, 44(9): 78-83. |
[15] | LIAO Minle, HUANG Chongyang, DAI Chengcheng, LI Hualin, FAN Gaosong. Analysis method of electric energy substitution potential based on time series and BP neural network [J]. Integrated Intelligent Energy, 2022, 44(3): 38-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||