综合智慧能源 ›› 2025, Vol. 47 ›› Issue (10): 1-9.doi: 10.3969/j.issn.2097-0706.2025.10.001
• 电化学储能 • 下一篇
庄富豪1a(
), 吴军1b,2,*(
), 朱瑞金1b(
), 吴红梅1b(
), 田润1a(
), 薛雨润1b(
)
收稿日期:2024-08-24
修回日期:2024-10-23
出版日期:2025-02-18
通讯作者:
*吴军(1977),男,教授,博士,从事电力系统运行分析与控制、综合能源系统、电力系统规划等方面的研究,byronwu@whu.edu.cn。作者简介:庄富豪(1997),男,硕士生,从事电力系统规划方面的研究,zfh67896789@163.com;基金资助:
ZHUANG Fuhao1a(
), WU Jun1b,2,*(
), ZHU Ruijin1b(
), WU Hongmei1b(
), TIAN Run1a(
), XUE Yurun1b(
)
Received:2024-08-24
Revised:2024-10-23
Published:2025-02-18
Supported by:摘要:
氢能是一种绿色、清洁的二次能源,已成为能源互联的重要媒介,是实现中国“双碳”目标的重要载体。然而中国氢能技术的研发和产业的应用尚处于起步阶段,氢能的制备、储存、运输和应用等全产业链的各个环节存在大量技术难题需要解决。绿电制氢利用中国丰富的风电、光伏等可再生能源优势,在源-网-荷之间实现电力与氢能的耦合,促进电网稳定运行,支撑可再生能源大规模发展。从制氢、储氢、运氢和应用等各个环节研究了绿电制氢关键技术的发展现状与趋势,得出绿氢具有广泛的应用场景,风电光伏等可再生能源余电制氢将是未来主流的制氢方式。结合氢能产业发展提出了典型的应用场景和发展建议,为绿电制氢产业发展提供参考思路。
中图分类号:
庄富豪, 吴军, 朱瑞金, 吴红梅, 田润, 薛雨润. 绿电制氢产业关键技术现状及展望[J]. 综合智慧能源, 2025, 47(10): 1-9.
ZHUANG Fuhao, WU Jun, ZHU Ruijin, WU Hongmei, TIAN Run, XUE Yurun. Current status and prospects of key technologies in green hydrogen production industry[J]. Integrated Intelligent Energy, 2025, 47(10): 1-9.
表1
典型制氢技术对比
| 项目 | AEL | PEM | SOEC | AEM |
|---|---|---|---|---|
| 反应温度/℃ | 70 ~90 | 70 ~80 | 700 ~1 000 | 80 |
| 电解质 | 质量分数为25%~30%的KOH溶液 | 全氟磺酸膜 | Y2O3/ZrO2 | 固体高分子膜 |
| 电解效率/% | 60.0 ~75.0 | 70.0 ~90.0 | 85.0 ~100.0 | 77.6 ~82.0 |
| 技术水平 | 成熟 | 较成熟 | 初期示范 | 实验室阶段 |
| 启停速度 | 较快 | 快 | 慢 | 快 |
| 响应速度 | 较快 | 快 | 慢 | 快 |
| 电源质量 | 稳定 | 稳定、波动 | 稳定 | 稳定 |
| 电流密度/(A·cm-2) | 0.2~0.4 | 1.0 ~2.0 | 1.0 ~10.0 | 1.0 ~2.0 |
| 运行维护 | 复杂 | 简单 | 初期研究 | 试验阶段 |
| [1] | 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8):2806-2819. |
| ZHANG Zhigang, KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819. | |
| [2] | 黄雨涵, 丁涛, 李雨婷, 等. 碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J]. 中国电机工程学报, 2021, 41(S1): 28-51. |
| HUANG Yuhan, DING Tao, LI Yuting, et al. Summary of energy low-carbon technology under the background of carbon neutrality and its enlightenment to the development of new power system[J]. Proceedings of the CSEE, 2021, 41(S1): 28-51. | |
| [3] | 李建林, 李光辉, 马速良, 等. 碳中和目标下制氢关键技术进展及发展前景综述[J]. 热力发电, 2021, 50(6): 1-8. |
| LI Jianlin, LI Guanghui, MA Suliang, et al. Overview of the progress and development prospects of key technologies for hydrogen production under the goal of carbon neutrality[J]. Thermal Power Generation, 2021, 50(6): 1-8. | |
| [4] | SHAU A, DE P, RAY P. Improvement on efficiencies of dilute alkaline water electrolyzer using membranes[J]. International Journal of Hydrogen Energy, 2016, 41(48): 22652-22662. |
| [5] | HONG Z P, WEI Z X, HAN X J. Optimization scheduling control strategy of wind-hydrogen system considering hydrogen production efficiency[J]. Journal of Energy Storage, 2022, 47: 103609. |
| [6] | 王林, 刘晓莎, 胡平, 等. 固体氧化物电解槽辅助煤电机组深度调峰技术可行性研究[J]. 热力发电, 2024, 53(2): 133-141. |
| WANG Lin, LIU Xiaosha, HU Ping, et al. Feasibility study on deep peak shaving technology for SOEC assisted coal-fired power units[J]. Thermal Power Generation, 2024, 53(2): 133-141. | |
| [7] | CAI X, LIN R, XU J, et al. Construction and analysis of photovoltaic directly coupled conditions in PEM electrolyzer[J]. International Journal of Hydrogen Energy, 2022, 47(10): 6494-6507. |
| [8] | RAKOUSKY C, REIMER U, WIPPERMANN K, et al. Polymer electrolyte membrane water electrolysis: Restraining degradation in the presence of fluctuating power[J]. Journal of Power Sources, 2017, 342: 38-47. |
| [9] |
张盛, 郑津洋, 戴剑锋, 等. 可再生能源大规模制氢及储氢系统研究进展[J]. 太阳能学报, 2024, 45(1): 457-465.
doi: 10.19912/j.0254-0096.tynxb.2022-1473 |
|
ZHANG Sheng, ZHENG Jinyang, DAI Jianfeng, et al. Research progress on renewable energy system coupled with large-scale hydrogen production and storage[J]. Acta Energiae Solaris Sinica, 2024, 45(1): 457-465.
doi: 10.19912/j.0254-0096.tynxb.2022-1473 |
|
| [10] |
马晓锋, 张舒涵, 何勇, 等. PEM电解水制氢技术的研究现状与应用展望[J]. 太阳能学报, 2022, 43(6): 420-427.
doi: 10.19912/j.0254-0096.tynxb.2022-0360 |
|
MA Xiaofeng, ZHANG Shuhan, HE Yong, et al. Research status and application prospect of PEM electrolysis water technology for hydrogen production[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 420-427.
doi: 10.19912/j.0254-0096.tynxb.2022-0360 |
|
| [11] | 宋小云, 叶青, 胡晓, 等. 水电解制氢三相界面构筑研究进展[J]. 热力发电, 2022, 51(11): 25-36. |
| SONG Xiaoyun, YE Qing, HU Xiao, et al. Research progress on construction of triphase interface for hydrogen production by water electrolysis[J]. Thermal Power Generation, 2022, 51(11): 25-36. | |
| [12] | BLUM L, MALZBENDER J, BERT DE HAART L G J, et al. Recent results in Jülich solid oxide fuel cell technology development[J]. Journal of Power Sources, 2013, 241: 477-485. |
| [13] | HAGEN A K, FRANDSEN H L. Solid oxide development status at DTU energy[J]. ECS Transactions, 2019, 91(1): 235-245. |
| [14] |
薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58.
doi: 10.3969/j.issn.2097-0706.2023.09.007 |
|
XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development[J]. Integrated Intelligent Energy, 2023, 45(9): 48-58.
doi: 10.3969/j.issn.2097-0706.2023.09.007 |
|
| [15] |
吴张宇, 吴池莉, 于慧铭, 等. 面向大规模光伏电站的无人机巡检路径规划策略[J]. 综合智慧能源, 2024, 46(11): 46-53.
doi: 10.3969/j.issn.2097-0706.2024.11.006 |
|
WU Zhangyu, WU Chili, YU Huiming, et al. Path planning strategy of UAV inspection of large-scale photovoltaic power stations[J]. Integrated Intelligent Energy, 2024, 46(11): 46-53.
doi: 10.3969/j.issn.2097-0706.2024.11.006 |
|
| [16] |
时圣尧, 姜明磊, 张贺一, 等. 高比例风电接入的送端混合级联直流输电系统无功协调控制策略[J]. 综合智慧能源, 2024, 46(11): 83-91.
doi: 10.3969/j.issn.2097-0706.2024.11.010 |
|
SHI Shengyao, JIANG Minglei, ZHANG Heyi, et al. Reactive power coordination control strategy for sending-end hybrid cascaded HVDC transmission system with high proportion of wind power integration[J]. Integrated Intelligent Energy, 2024, 46(11): 83-91.
doi: 10.3969/j.issn.2097-0706.2024.11.010 |
|
| [17] |
ZENG F, MEBRAHTU C, LIAO L F, et al. Stability and deactivation of OER electrocatalysts: A review[J]. Journal of Energy Chemistry, 2022, 69: 301-329.
doi: 10.1016/j.jechem.2022.01.025 |
| [18] |
殷卓成, 杨高, 刘怀, 等. 氢能储运关键技术研究现状及前景分析[J]. 现代化工, 2021, 41(11): 53-57.
doi: 10.16606/j.cnki.issn 0253-4320.2021.11.012 |
|
YIN Zhuocheng, YANG Gao, LIU Huai, et al. Research status and prospect analysis of key technologies for hydrogen energy storage and transportation[J]. Modern Chemical Industry, 2021, 41(11): 53-57.
doi: 10.16606/j.cnki.issn 0253-4320.2021.11.012 |
|
| [19] | 姜海洋, 杜尔顺, 朱桂萍, 等. 面向高比例可再生能源电力系统的季节性储能综述与展望[J]. 电力系统自动化, 2020, 44(19): 194-207. |
| JIANG Haiyang, DU Ershun, ZHU Guiping, et al. Review and prospect of seasonal energy storage for power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2020, 44(19): 194-207. | |
| [20] | 胡晓雨, 曹伟炜, 余浩, 等. 中国氢能产业链发展现状[J]. 电力勘测设计, 2024(3): 12-17. |
| HU Xiaoyu, CAO Weiwei, YU Hao, et al. Development status of hydrogen energy industry chain in China[J]. Electric Power Survey & Design, 2024(3): 12-17. | |
| [21] | 曹军文, 覃祥富, 耿嘎, 等. 氢气储运技术的发展现状与展望[J]. 石油学报(石油加工), 2021, 37(6): 1461-1478. |
| CAO Junwen, QIN Xiangfu, GENG Ga, et al. Current status and prospects of hydrogen storage and transportation technology[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(6): 1461-1478. | |
| [22] |
许传博, 刘建国. 氢储能在我国新型电力系统中的应用价值、挑战及展望[J]. 中国工程科学, 2022, 24(3): 89-99.
doi: 10.15302/J-SSCAE-2022.03.010 |
|
XU Chuanbo, LIU Jianguo. Hydrogen energy storage in China's new-type power system: Application value, challenges, and prospects[J]. Strategic Study of CAE, 2022, 24(3): 89-99.
doi: 10.15302/J-SSCAE-2022.03.010 |
|
| [23] | 李靖, 徐天奇, 李琰, 等. 基于多市场耦合的新能源综合发电项目的盈利能力研究[J]. 电力系统保护与控制, 2024, 52(6): 65-76. |
| LI Jing, XU Tianqi, LI Yan, et al. Profitability study of multi-market coupled integrated renewable energy generation projects[J]. Power System Protection and Control, 2024, 52(6): 65-76. | |
| [24] |
郭博文, 罗聃, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951.
doi: 10.16085/j.issn.1000-6613.2020-1889 |
|
GUO Bowen, LUO Dan, ZHOU Hongjun. Recent advances in renewable energy electrolysis hydrogen production technology and related electrocatalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2933-2951.
doi: 10.16085/j.issn.1000-6613.2020-1889 |
|
| [25] | VOGL V, MAX Å, NILSSON L J. Assessment of hydrogen direct reduction for fossil-free steelmaking[J]. Journal of Cleaner Production, 2018, 203: 736-745. |
| [26] | TANG J, CHU M S, LI F, et al. Development and progress on hydrogen metallurgy[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(6): 713-723. |
| [27] | SHAO C C, FENG C J, SHAHIDEHPOUR M, et al. Optimal stochastic operation of integrated electric power and renewable energy with vehicle-based hydrogen energy system[J]. IEEE Transactions on Power Systems, 2021, 36(5): 4310-4321. |
| [28] | 张鹏成, 徐箭, 孙元章, 等. 氢能驱动下钢铁园区能源系统低碳发展模式[J]. 电力系统自动化, 2022, 46(13): 10-20. |
| ZHANG Pengcheng, XU Jian, SUN Yuanzhang, et al. Low-carbon development mode for energy system of iron and steel park driven by hydrogen energy[J]. Automation of Electric Power Systems, 2022, 46(13): 10-20. | |
| [29] | 张鹏成, 徐箭, 柯德平, 等. 氢能驱动下钢铁园区能源系统优化配置[J]. 电力系统自动化, 2022, 46(14): 1-10. |
| ZHANG Pengcheng, XU Jian, KE Deping, et al. Optimal configuration of energy system in iron and steel park driven by hydrogen energy[J]. Automation of Electric Power Systems, 2022, 46(14): 1-10. |
| [1] | 王宇轩, 郝宁, 赵峰, 蒋俊, 张国坤, 边文杰, 尚恒. 面向微网的源网荷储一体化功率分配策略研究[J]. 综合智慧能源, 2025, 47(8): 58-67. |
| [2] | 李晓宁, 孙娜, 黄阿敏, 董海鹰. 基于蛇优化算法的PEMFC空气供给系统模糊自抗扰控制[J]. 综合智慧能源, 2025, 47(6): 57-73. |
| [3] | 叶幸, 邱辰, 艾琳, 辛颂旭, 郭雁珩. “双碳”目标下可再生能源绿证与碳交易衔接机制的思考[J]. 综合智慧能源, 2025, 47(5): 12-20. |
| [4] | 陈浩, 马刚, 钱达, 马健, 彭乐瑶. 绿证-碳交易机制下考虑阶梯需求响应的区域综合能源系统优化调度[J]. 综合智慧能源, 2025, 47(5): 21-30. |
| [5] | 张冬冬, 单琳珂, 刘天皓. 人工智能技术在风力与光伏发电数据挖掘及功率预测中的应用综述[J]. 综合智慧能源, 2025, 47(3): 32-46. |
| [6] | 张敏, 王雁河, 孙周, 刘斌, 姜之未, 曹灿, 高峰. 交能融合应用场景与技术体系研究[J]. 综合智慧能源, 2025, 47(2): 13-28. |
| [7] | 苏锐, 王希龙, 江阎, 宋晨辉. 基于改进成本分配法的虚拟电厂调度规划[J]. 综合智慧能源, 2025, 47(1): 10-17. |
| [8] | 徐强. 基于NSGA-Ⅲ算法的分布式光伏储能系统优化配置方法[J]. 综合智慧能源, 2025, 47(1): 26-33. |
| [9] | 聂雪颖, 程懋松, 左献迪, 戴志敏. 考虑风光消纳的风光核储混合系统容量优化[J]. 综合智慧能源, 2025, 47(1): 51-61. |
| [10] | 王晓燕, 吴书泉. 基于改进粒子群优化算法的源网荷储系统容量配置研究[J]. 综合智慧能源, 2024, 46(9): 28-36. |
| [11] | 樊颜搏, 熊亚选, 李想, 田曦, 杨洋. 基于遗传算法的建筑用能多目标优化应用进展[J]. 综合智慧能源, 2024, 46(9): 69-85. |
| [12] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
| [13] | 殷林飞, 蒙雨洁. 基于DenseNet卷积神经网络的短期风电预测方法[J]. 综合智慧能源, 2024, 46(7): 12-20. |
| [14] | 郑庆明, 井延伟, 梁涛, 柴露露, 吕梁年. 基于DDPG算法的离网型可再生能源大规模制氢系统优化调度[J]. 综合智慧能源, 2024, 46(6): 35-43. |
| [15] | 董强, 徐君, 方东平, 方丽娟, 陈妍琼. 基于光伏出力特性的分布式光储系统优化调度策略[J]. 综合智慧能源, 2024, 46(4): 17-23. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||

