综合智慧能源 ›› 2025, Vol. 47 ›› Issue (9): 38-50.doi: 10.3969/j.issn.2097-0706.2025.09.005

• 新能源出力预测与不确定性量化 • 上一篇    下一篇

融合CEEMDAN-CNN-LSTM的风电机组多气象场景功率回归预测

皇甫陈萌1(), 阮贺彬1(), 徐俊俊2,*()   

  1. 1.南京信息工程大学 自动化学院,南京 210044
    2.南京邮电大学 自动化学院,南京 210023
  • 收稿日期:2025-06-09 修回日期:2025-07-18 出版日期:2025-09-25
  • 通讯作者: * 徐俊俊(1990),男,副教授,博士,从事配电网态势感知、信息物理系统等方面的研究,jjxu@njupt.edu.cn
  • 作者简介:皇甫陈萌(2004),女,从事风电机组功率回归预测方面的研究,202213930077@nuist.edu.cn
    阮贺彬(1997),女,讲师,博士,从事电力市场、配电网分布式优化以及无功电压优化等方面的研究,hebin.ruan@nuist.edu.cn
  • 基金资助:
    国家自然科学基金项目(52107101)

Power regression prediction for wind turbines in multi-meteorological scenarios based on CEEMDAN-CNN-LSTM integration

HUANGFU Chenmeng1(), RUAN Hebin1(), XU Junjun2,*()   

  1. 1. School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
    2. College of Automation,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
  • Received:2025-06-09 Revised:2025-07-18 Published:2025-09-25
  • Supported by:
    National Natural Science Foundation of China(52107101)

摘要:

为提高不同气象场景下风电机组输出功率预测的准确性,提出了一种基于自适应噪声完备集合经验模态分解(CEEMDAN)-卷积神经网络(CNN)-长短期记忆(LSTM)网络模型的风电机组功率回归预测方法。采用CEEMDAN算法对原始风电功率数据进行分解,利用本征模态函数(IMFs)和残差项(RES),并考虑风速等5种气象因素,结合CNN提取特征;采用LSTM网络对每个子序列进行回归预测,并将预测结果进行叠加重构,得到最终预测值,使用平均绝对误差和均方根误差评估预测精度。仿真结果表明:CEEMDAN-CNN-LSTM模型在预测精度上明显优于随机森林-LSTM(RF-LSTM)和支持向量机-LSTM(SVM-LSTM)模型,尤其在复杂气象条件和极端天气下,模型预测精度和泛化能力显著提升。

关键词: 风电机组, 功率预测, 气象因素, 极端天气, 自适应噪声完备集合经验模态分解, 卷积神经网络, 长短期记忆网络, 本征模态函数

Abstract:

To enhance the prediction accuracy of wind turbine output power under diverse meteorological conditions, a power regression prediction method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), convolutional neural network(CNN), and long short-term memory(LSTM) network was proposed. The CEEMDAN algorithm was employed to decompose the original wind power data into intrinsic mode functions(IMFs) and a residual(RES). Five meteorological factors, including wind speed, were incorporated, and CNN was applied to extract features. LSTM networks were used to perform regression prediction for each subsequence. The prediction results were then superimposed and reconstructed to obtain the final predicted values. Prediction accuracy was evaluated using mean absolute error and root mean square error. Simulation results indicated that the CEEMDAN-CNN-LSTM model significantly outperformed the random forest-LSTM(RF-LSTM) and support vector machine-LSTM(SVM-LSTM) models in prediction accuracy, with notably improved performance and generalization capability under complex meteorological conditions and extreme weather events.

Key words: wind turbine, power prediction, meteorological factors, extreme weather, complete ensemble empirical mode decomposition with adaptive noise, convolutional neural network, long short-term memory network, intrinsic mode function

中图分类号: