Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (5): 39-45.doi: 10.3969/j.issn.2097-0706.2023.05.005
• Thermal Conversion of Biomass • Previous Articles Next Articles
YANG Wei1(), LYU Leida1, PENG Shiyang2,3, LI Wei2,3, CAI Hongchun2,3, HAN Yong1, ZHU Youjian1,*(
), YANG Haiping4, ZHAO Hai5
Received:
2022-10-31
Revised:
2022-12-25
Published:
2023-05-25
Supported by:
CLC Number:
YANG Wei, LYU Leida, PENG Shiyang, LI Wei, CAI Hongchun, HAN Yong, ZHU Youjian, YANG Haiping, ZHAO Hai. Effect of acid pickling and phosphoric acid impregnation on pyrolysis characteristics of duckweed[J]. Integrated Intelligent Energy, 2023, 45(5): 39-45.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.05.005
Table 1
Proximate and ultimate analyses and main components of the samples
项目 | DW | ADW | |
---|---|---|---|
工业分析/% | w(A) | 21.38 | 6.98 |
w(V) | 69.91 | 72.64 | |
w(FC) | 8.71 | 20.38 | |
元素分析/% | w(C) | 36.36 | 44.70 |
w(H) | 5.38 | 6.39 | |
w(N) | 5.34 | 6.63 | |
w(S) | 0.48 | 0.37 | |
w(O) | 31.06 | 34.93 | |
QHHV/(MJ·kg-1) | 15.41 | 19.40 | |
主要成分质量分数/% | 纤维素 | 14.26 | |
蛋白质 | 21.50 | ||
淀粉 | 47.80 | ||
木质素 | 1.16 |
[1] |
WANG K, BROWN R C. Catalytic pyrolysis of microalgae for production of aromatics and ammonia[J]. Green Chemistry, 2013, 15(3): 675-681.
doi: 10.1039/c3gc00031a |
[2] |
MADDI B, VIAMAJALA S, VARANASI S. Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass[J]. Bioresource Technology, 2011, 102(23): 11018-11026.
doi: 10.1016/j.biortech.2011.09.055 pmid: 21983407 |
[3] |
SOTOUDEHNIAKARANI F, ALAYAT A, MCDONALD A G. Characterization and comparison of pyrolysis products from fast pyrolysis of commercial Chlorella vulgaris and cultivated microalgae[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 258-273.
doi: 10.1016/j.jaap.2019.02.014 |
[4] |
NGUYEN T B, TRUONG Q M, CHEN C W, et al. Pyrolysis of marine algae for biochar production for adsorption of ciprofloxacin from aqueous solutions[J]. Bioresource Technology, 2022, 351: 127043.
doi: 10.1016/j.biortech.2022.127043 |
[5] | CAMPANELLA A, HAROLD M P. Fast pyrolysis of microalgae in a falling solids reactor: Effects of process variables and zeolite catalysts[J]. Biomass & Bioenergy, 2012, 46: 218-232. |
[6] |
FUENTES M, NOWAKOWSKI D, KUBACKI M, et al. Survey of influence of biomass mineral matter in thermochemical conversion of short rotation willow coppice[J]. Journal of the Energy Institute, 2008, 81(4):234-241.
doi: 10.1179/014426008X370942 |
[7] |
CHEN X, WU H. Effect of phosphorus (P) on the structure and reactivity of biochars produced from the pyrolysis of acid-washed biomass loaded with P of various forms[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3959-3967.
doi: 10.1016/j.proci.2020.06.287 |
[8] |
BLASI C D. Kinetic and heat transfer control in the slow and flash pyrolysis of solids[J]. Industrial & Engineering Chemistry Research, 1996, 35(1): 37-46.
doi: 10.1021/ie950243d |
[9] |
KANG X, ZHU H, WANG C, et al. Biomass derived hierarchically porous and heteroatom-doped carbons for supercapacitors[J]. Journal of Colloid and Interface Science, 2018, 509: 369-383.
doi: S0021-9797(17)31031-7 pmid: 28923734 |
[10] |
KUMAR A, JONES D D, HANNA M A. Thermochemical biomass gasification: A review of the current status of the technology[J]. Energies, 2009, 2(3): 556-581.
doi: 10.3390/en20300556 |
[11] | 陈旭. 生物质富钙热解过程中生物油脱氧机理及调控机制研究[D]. 武汉: 华中科技大学, 2018. |
CHEN Xu. Study on the mechanism and regulatory mechanism of bio-oil deoxygenation during calcium-rich pyrolysis of biomass[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
[12] |
YANG W, ZHU Y, CHENG W, et al. Characteristics of particulate matter emitted from agricultural biomass combustion[J]. Energy & Fuels, 2017, 31(7):7493-7501.
doi: 10.1021/acs.energyfuels.7b00229 |
[13] |
齐鹏刚, 苏银海, 张书平, 等. 酸洗预处理对生物质热解焦物理化学特性的影响[J]. 太阳能学报, 2022, 43(8): 441-446.
doi: 10.19912/j.0254-0096.tynxb.2021-0024 |
QI Penggang, SU Yinhai, ZHANG Shuping, et al. Effect of pickling pretreatment on physicochemical properties of biomass pyrolytic coke[J]. Journal of Solar Energy, 2022, 43(8): 441-446. | |
[14] |
KNUDSEN J N, JENSEN P A, DAM-JOHANSEN K. Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass[J]. Energy & Fuels, 2004, 18(5): 1385-1399.
doi: 10.1021/ef049944q |
[15] |
NOACK S R, MCLAUGHLIN M J, SMERNIK R J, et al. Crop residue phosphorus: Speciation and potential bio-availability[J]. Plant and Soil, 2012, 359(1): 375-385.
doi: 10.1007/s11104-012-1216-5 |
[16] |
MURADOV N, FIDALGO B, GUJAR A C, et al. Pyrolysis of fast-growing aquatic biomass—Lemna minor (duckweed): Characterization of pyrolysis products[J]. Bioresource Technology, 2010, 101(21): 8424-8428.
doi: 10.1016/j.biortech.2010.05.089 |
[17] | 牛琦. 典型藻类生物质热解实验与机理研究[D]. 天津: 天津大学, 2018. |
NIU Qi. Experimental and mechanistic study of pyrolysis of typical algal biomass[D]. Tianjin: Tianjin University, 2018. | |
[18] |
LI F, SRIVATSA S C, BATCHELOR W, et al. A study on growth and pyrolysis characteristics of microalgae using thermogravimetric analysis-infrared spectroscopy and synchrotron fourier transform infrared spectroscopy[J]. Bioresource Technology, 2017, 229: 1-10.
doi: S0960-8524(17)30018-4 pmid: 28088575 |
[19] |
GAO W, CHEN K, XIANG Z, et al. Kinetic study on pyrolysis of tobacco residues from the cigarette industry[J]. Industrial Crops and Products, 2013, 44: 152-157.
doi: 10.1016/j.indcrop.2012.10.032 |
[20] |
LI Y, XIN Y, WANG X, et al. Fixed bed reactor pyrolysis of rape straw: Effect of dilute acid pickling on the production of bio-oil and enhancement of sugars[J]. Industrial & Engineering Chemistry Research, 2020, 59(39): 17564-17574.
doi: 10.1021/acs.iecr.0c02011 |
[21] | 黄顺进, 张坤, 张润衡, 等. 沙棘树枝热解产物分布及产物表征[J]. 广东化工, 2021(4):33-35. |
HUANG Shunjin, ZHANG Kun, ZHANG Runheng, et al. Distribution and characterization of pyrolysis products from seabuckthorn branches[J]. Guangdong Chemical Industry, 2021(4):33-35. | |
[22] |
WANG Q, HAN K, GAO J, et al. Investigation of maize straw char briquette ash fusion characteristics and the influence of phosphorus additives[J]. Energy & Fuels, 2017, 31(3): 2822-2830.
doi: 10.1021/acs.energyfuels.7b00047 |
[23] |
LIU W J, LI W W, JIANG H, et al. Fates of chemical elements in biomass during its pyrolysis[J]. Chemical Reviews, 2017, 117(9): 6367-6398.
doi: 10.1021/acs.chemrev.6b00647 |
[24] | 马中青, 张齐生. 温度对马尾松热解产物产率和特性的影响[J]. 浙江农林大学学报, 2016, 33(1): 109-115. |
MA Zhongqing, ZHANG Qisheng. Effect of temperature on yield and characteristics of pyrolysis products of masson pine[J]. Journal of Zhejiang A&F University, 2016, 33(1):109-115. | |
[25] | 高现文, 单春贤, 李海英, 等. 温度对污泥热解产物及特性的影响[J]. 生态环境, 2007, 16(4): 1189-1192. |
GAO Xianwen, SHAN Chunxian, LI Haiying, et al. Effect of temperature on pyrolysis products and characteristics of sludge[J]. Ecology and Environment, 2007, 16(4):1189-1192. | |
[26] | 车长波, 袁际华. 世界生物质能源发展现状及方向[J]. 天然气工业, 2011, 31(1):104-106. |
CHE Changbo, YUAN Jihua. Development status and direction of biomass energy in the world[J]. Natural Gas Industry, 2011, 31(1):104-106. | |
[27] | 胡亿明. 木质生物质各组分热解过程和热力学特性研究[D]. 北京: 中国林业科学研究院, 2014. |
HU Yiming. Study of pyrolysis processes and thermodynamic properties of various components of woody biomass[D]. Beijing: Chinese Academy of Forestry, 2014. | |
[28] |
MIAO X, WU Q, YANG C. Fast pyrolysis of microalgae to produce renewable fuels[J]. Journal of Analytical and Applied Pyrolysis, 2004, 71(2): 855-863.
doi: 10.1016/j.jaap.2003.11.004 |
[29] | 顾新娇, 王文国, 胡启春. 浮萍环境修复与生物质资源化利用研究进展[J]. 中国沼气, 2013, 31(5): 15-19. |
GU Xinjiao, WANG Wenguo, HU Qichun. Research progress on environmental remediation and biomass utilization of duckweed[J]. China Biogas, 2013, 31(5):15-19. | |
[30] |
CAMPANELLA A, HAROLD M P. Fast pyrolysis of microalgae in a falling solids reactor: Effects of process variables and zeolite catalysts[J]. Biomass and Bioenergy, 2012, 46: 218-232.
doi: 10.1016/j.biombioe.2012.08.023 |
[31] | 任衍森, 马腾, 周毅, 等. 温度对棉花秸秆热解固液相产物特性的影响[J]. 石河子大学学报(自然科学版), 2020, 38(6): 668-674. |
REN Yansen, MA Teng, ZHOU Yi, et al. Effect of temperature on characteristics of solid and liquid products during pyrolysis of cotton straw[J]. Journal of Shihezi University(Natural Science Edition), 2020, 38(6):668-674. | |
[32] | 王莹. 酸洗-烘焙联合预处理对谷子秸秆及谷糠热解特性影响研究[D]. 沈阳: 沈阳农业大学, 2020. |
WANG Ying. Study on the effect of combined pickling-baking pretreatment on the pyrolysis characteristics of cereal straw and bran[D]. Shenyang: Shenyang Agricultural University, 2020. | |
[33] |
LIU G, WRIGHT M M, ZHAO Q, et al. Catalytic fast pyrolysis of duckweed: Effects of pyrolysis parameters and optimization of aromatic production[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 29-36.
doi: 10.1016/j.jaap.2015.02.026 |
[1] | SU Panpan, WANG Xuetao, XING Lili, LI Haojie, LIU Mengjie. Research progress on preparation of liquid fuels by catalytic pyrolysis of pretreated biomass [J]. Integrated Intelligent Energy, 2024, 46(3): 1-11. |
[2] | MENG Qiang, YANG Yang, XIONG Yaxuan. Study on thermal stability of molten salt composites added with SiO2 nanoparticles [J]. Integrated Intelligent Energy, 2023, 45(9): 32-39. |
[3] | LI Pengzhen, JIA Bingke, LIU Yanhong, WU Zhenlong. Modified active disturbance rejection control on the post-combustion CO2 capture system [J]. Integrated Intelligent Energy, 2023, 45(8): 18-25. |
[4] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[5] | JIANG Yuchen, LI Qingyang, HU Xun. Research progress of biochar prepared by microwave pyrolysis technology [J]. Integrated Intelligent Energy, 2023, 45(5): 46-62. |
[6] | FAN Dekai, FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun. Review on the preparation of high-value chemicals from cellulose pyrolysis [J]. Integrated Intelligent Energy, 2023, 45(5): 24-31. |
[7] | CHEN Wenxuan, LI Xueqin, LIU Peng, LI Yanling, LU Yan, LEI Tingzhou. Study on pyrolysis law of catalytic biomass tar model compounds [J]. Integrated Intelligent Energy, 2023, 45(5): 63-69. |
[8] | FANG Rui, DUAN Zhiyong, LIU Zaizhi, WANG Yuxuan, LIU Chenxi, LI Hao, FAN Chuigang. Review on marine litter treatment technologies [J]. Integrated Intelligent Energy, 2023, 45(5): 70-79. |
[9] | LI Minxia, HOU Beiran, WANG Pai, DONG Liwei, TIAN Hua. Application and development of CO2 transcritical cycle heat pumps [J]. Integrated Intelligent Energy, 2023, 45(4): 12-18. |
[10] | HAN Qianwen, ZHANG Kun, CHEN Xiaoyang, ZHU Tenglong. Study on La/Ni co-doped SrTi0.35Fe0.65O3-δ symmetric electrode for H2O/CO2 co-electrolysis in SOECs [J]. Integrated Intelligent Energy, 2022, 44(8): 43-49. |
[11] | CHEN Yong, SU Junhua, WANG Yang. Feasibility analysis on methane production by CO2 hydrogenation in China [J]. Integrated Intelligent Energy, 2022, 44(6): 86-90. |
[12] | WEI Shuzhou, LI Bingfa, SUN Chenyang, ZHOU Xing, WANG Yalong, ZOU Yifan, DENG Jingmin, WANG Jinxing. Research progress of compressed air energy storage and its coupling power generation [J]. Huadian Technology, 2021, 43(7): 9-16. |
[13] | HU Xiaofu, WANG Kailiang, SHEN Jianyong, BAI Yongfeng. Research progress of CO2 resource utilization based on biological carbon sequestration technology [J]. Huadian Technology, 2021, 43(6): 79-85. |
[14] | ZHAO Dazhou, WANG Mingxiang, RUAN Huifeng, GU Jing, WANG Mingxiao. Simulation and optimization for Urea-SCR system of the natural gas internal combustion engine in a distributed energy station [J]. Huadian Technology, 2021, 43(5): 45-52. |
[15] | DAI Baomin, LIU Shengchun, CAO Yu, YANG Haining, FENG Yining, XIAO Peng. Efficiency enhancement technology and carbon emission prediction of refrigeration system taking CO2 natural refrigerant in supermarkets [J]. Huadian Technology, 2021, 43(11): 74-84. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||