Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (12): 72-80.doi: 10.3969/j.issn.2097-0706.2024.12.009
• Optimal Operation and Control • Previous Articles Next Articles
HU Xueru1(), XING Lingli1,*(
), LI Yuanyuan1, SU Wen2, LIU Pengfei1, DING Ruochen3, LIN Xinxing3
Received:
2024-09-18
Revised:
2024-10-21
Published:
2024-11-18
Contact:
XING Lingli
E-mail:2206080131@mail.hnust.edu.cn;xinglingli@hnust.edu.cn
Supported by:
CLC Number:
HU Xueru, XING Lingli, LI Yuanyuan, SU Wen, LIU Pengfei, DING Ruochen, LIN Xinxing. Performance simulation and analysis of an isobaric compressed air energy storage system based on Aspen Plus[J]. Integrated Intelligent Energy, 2024, 46(12): 72-80.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.12.009
Table 2
State parameters of 4 compression and 4 expansion energy storage system under design conditions
状态点 | 温度/℃ | 压力/MPa | 质量流量/(kg·s-1) |
---|---|---|---|
1 | 30.00 | 0.10 | 148.91 |
2 | 160.17 | 0.30 | 148.91 |
3 | 35.00 | 0.26 | 148.91 |
4 | 160.02 | 0.74 | 148.91 |
5 | 35.00 | 0.70 | 148.91 |
6 | 160.02 | 1.99 | 148.91 |
7 | 35.00 | 1.95 | 148.91 |
8 | 160.01 | 5.50 | 148.91 |
9 | 35.00 | 5.50 | 148.91 |
1+ | 150.01 | 1.60 | 35.81 |
2+ | 150.00 | 1.60 | 35.99 |
3+ | 150.00 | 1.60 | 36.41 |
4+ | 150.03 | 1.60 | 37.61 |
7+ | 150.01 | 1.60 | 145.83 |
7++ | 34.00 | 1.60 | 145.83 |
C1 | 34.00 | 1.60 | 35.81 |
C2 | 34.00 | 1.60 | 35.99 |
C3 | 34.00 | 1.60 | 36.41 |
C4 | 34.00 | 1.60 | 37.61 |
10 | 35.00 | 5.50 | 296.69 |
11 | 139.00 | 5.50 | 296.69 |
12 | 62.07 | 2.44 | 296.69 |
13 | 139.00 | 2.40 | 296.69 |
14 | 47.34 | 0.89 | 296.69 |
15 | 139.00 | 0.85 | 296.69 |
16 | 47.35 | 0.31 | 296.69 |
17 | 139.00 | 0.27 | 296.69 |
18 | 47.35 | 0.10 | 296.69 |
1++ | 59.70 | 1.60 | 75.20 |
2++ | 81.76 | 1.60 | 72.54 |
3++ | 66.80 | 1.60 | 71.61 |
4++ | 66.30 | 1.60 | 71.20 |
6-- | 68.62 | 1.60 | 290.55 |
8+ | 149.00 | 1.60 | 290.55 |
H1 | 149.00 | 1.60 | 75.20 |
H2 | 149.00 | 1.60 | 72.54 |
H3 | 149.00 | 1.60 | 71.61 |
H4 | 149.00 | 1.60 | 71.20 |
[1] | 刘笑驰, 梅生伟, 丁若晨, 等. 压缩空气储能工程现状、发展趋势及应用展望[J]. 电力自动化设备, 2023, 43(10): 38-47, 102. |
LIU Xiaochi, MEI Shengwei, DING Ruochen, et al. Current situation, development trend and application prospect of compressed air energy storage engineering projects[J]. Electric Power Automation Equipment, 2023, 43(10): 38-47, 102. | |
[2] |
万明忠, 王元媛, 李峻, 等. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31.
doi: 10.3969/j.issn.2097-0706.2023.09.004 |
WAN Mingzhong, WANG Yuanyuan, LI Jun, et al. Research progress and prospect of compressed air energy storage technology[J]. Integrated Intelligent Energy, 2023, 45(9): 26-31.
doi: 10.3969/j.issn.2097-0706.2023.09.004 |
|
[3] | 张新敬, 陈海生, 刘金超, 等. 压缩空气储能技术研究进展[J]. 储能科学与技术, 2012, 1(1): 26-40. |
ZHANG Xinjing, CHEN Haisheng, LIU Jinchao, et al. Research progress in compressed air energy storage system: A review[J]. Energy Storage Science and Technology, 2012, 1(1): 26-40. | |
[4] |
陈海生, 刘金超, 郭欢, 等. 压缩空气储能技术原理[J]. 储能科学与技术, 2013, 2(2): 146-151.
doi: 10.3969/j.issn.2095-4239.2013.02.008 |
CHEN Haisheng, LIU Jinchao, GUO Huan, et al. Technical principle of compressed air energy storage system[J]. Energy Storage Science and Technology, 2013, 2(2): 146-151.
doi: 10.3969/j.issn.2095-4239.2013.02.008 |
|
[5] |
薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58.
doi: 10.3969/j.issn.2097-0706.2023.09.007 |
XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development[J]. Integrated Intelligent Energy, 2023, 45(9): 48-58.
doi: 10.3969/j.issn.2097-0706.2023.09.007 |
|
[6] |
蒋文坤, 韩颖慧, 薛智文, 等. 多能互补能源系统中储能原理及其应用[J]. 综合智慧能源, 2022, 44(1): 63-71.
doi: 10.3969/j.issn.2097-0706.2022.01.009 |
JIANG Wenkun, HAN Yinghui, XUE Zhiwen, et al. Energy storage technologies and their applications in multi-energy complementary power system[J]. Integrated Intelligent Energy, 2022, 44(1): 63-71.
doi: 10.3969/j.issn.2097-0706.2022.01.009 |
|
[7] | 张伟德, 徐钢, 刘文毅, 等. 典型压缩空气蓄能(CAES)电站热力学分析与系统优化[J]. 现代电力, 2013, 30(2): 41-47. |
ZHANG Weide, XU Gang, LIU Wenyi, et al. Thermodynamic analysis and optimization of a typical compressed air energy storage(CAES) power plant[J]. Modern Electric Power, 2013, 30(2): 41-47. | |
[8] | 黄健. 压缩空气蓄能-联合循环系统性能分析及优化[D]. 北京: 华北电力大学, 2014. |
HUANG Jian. Performance analysis and optimization of compressed air energy storage-combined cycle system[D]. Beijing: North China Electric Power University, 2014. | |
[9] | 纪律, 陈海生, 张新敬, 等. 压缩空气储能技术研发现状及应用前景[J]. 高科技与产业化, 2018, 24(4): 52-58. |
JI Lü, CHEN Haisheng, ZHANG Xinjing, et al. Research and development status and application prospect of compressed air energy storage technology[J]. High-Technology & Industrialization, 2018, 24(4): 52-58. | |
[10] | 张建军, 周盛妮, 李帅旗, 等. 基于Huntorf CAES工厂系统热力学分析[J]. 工程热物理学报, 2019, 40(1): 118-124. |
ZHANG Jianjun, ZHOU Shengni, LI Shuaiqi, et al. Thermodynamic analysis of compressed air energy storage system(CAES) based on Huntorf case[J]. Journal of Engineering Thermophysics, 2019, 40(1): 118-124. | |
[11] |
李双江, 肖枫, 陈伟, 等. 先进绝热压缩空气储能系统储能阶段建模仿真和动态分析[J]. 山东科学, 2024, 37(5):42-53.
doi: 10.3976/j.issn.1002-4026.20230171 |
LI Shuangjiang, XIAO Feng, CHEN Wei, et al. Modeling, simulation, and dynamic analysis of energy storage phase in advanced adiabatic compressed air energy storage systems[J]. Shandong Science, 2024, 37(5):42-53.
doi: 10.3976/j.issn.1002-4026.20230171 |
|
[12] | WEN X K, YANG D H, ZHONG J L, et al. Research on recovery and utilization of waste heat in advanced compressed air energy storage system[J]. Energy Reports, 2022, 8: 1436-1445. |
[13] | 李国庆. 先进压缩空气储能系统动态建模仿真与运行控制研究[D]. 北京: 华北电力大学, 2019. |
LI Guoqing. Research on dynamic modeling, simulation and operation control of advanced compressed air energy storage system[D]. Beijing: North China Electric Power University, 2019. | |
[14] | 王雅婧. 新型储能“蓄”势而发[N]. 中国纪检监察报, 2024-04-01( 005). |
[15] | 中国盐业股份有限公司. 世界首座非补燃压缩空气储能电站在江苏建成投产[J]. 电世界, 2022, 63(3): 62. |
China National Salt Industry Corporation. The world's first non-afterburning compressed air energy storage power station was completed and put into operation in Jiangsu[J]. Electrical World, 2022, 63(3): 62. | |
[16] | 刘园园. 地下盐穴化身“能源仓库”[N]. 科技日报, 2024-06-24( 002). |
[17] | 卢奇秀, 赵雪明. 世界首台(套)300 MW级压气储能电站成功并网[N]. 中国能源报, 2024-04-15( 13). |
[18] |
姬海民, 薛磊, 周方盛, 等. 非补燃液态压缩空气储能系统性能模拟研究[J]. 发电技术, 2024, 45(5):910-918.
doi: 10.12096/j.2096-4528.pgt.24030 |
JI Haimin, XUE Lei, ZHOU Fangsheng, et al. Simulation research on the performance of non-supplementary fired liquid compressed air energy storage systems[J]. Power Generation Technology, 2024, 45(5):910-918.
doi: 10.12096/j.2096-4528.pgt.24030 |
|
[19] | 张晓磊. 液态压缩空气储能系统热力性能关键技术研究[D]. 昆明: 昆明理工大学, 2016. |
ZHANG Xiaolei. Research on key technologies of thermal performance of liquid compressed air energy storage system[D]. Kunming: Kunming University of Science and Technology, 2016. | |
[20] | DING Y X, LIU Y R, HAN Y D, et al. An integrated system based on liquid air energy storage, closed brayton cycle and solar power: Energy, exergy and economic (3E) analysis[J]. Journal of Energy Storage, 2024, 94: 112496. |
[21] | 青海格尔木60兆瓦液态空气储能示范项目建设实现突破性进展[EB/OL]. (2024-08-29)[2024-09-01]. http://cdm.qinghai.gov.cn/system/2024/08/29/030052297.shtml. |
[22] | 郭祚刚, 马溪原, 雷金勇, 等. 压缩空气储能示范进展及商业应用场景综述[J]. 南方能源建设, 2019, 6(3): 17-26. |
GUO Zuogang, MA Xiyuan, LEI Jinyong, et al. Review on demonstration progress and commercial application scenarios of compressed air energy storage system[J]. Southern Energy Construction, 2019, 6(3): 17-26. | |
[23] | 陶永成, 王泽鹏, 郭兆君. 基于定压供气的压缩空气储能系统研究[J]. 电力勘测设计, 2023(12): 44-48. |
TAO Yongcheng, WANG Zepeng, GUO Zhaojun. Research on compressed air energy storage system with constant pressure gas supply[J]. Electric Power Survey & Design, 2023(12): 44-48. | |
[24] | 严凯, 侯付彬, 刘明明, 等. 恒压型抽水压缩空气储能系统的热力学及经济学多目标优化[J]. 工程热物理学报, 2020, 41(1): 135-140. |
YAN Kai, HOU Fubin, LIU Mingming, et al. Multi-objective optimization on thermodynamics and economics of a constant-pressure pumped hydro combined with compressed air energy storage system[J]. Journal of Engineering Thermophysics, 2020, 41(1): 135-140. | |
[25] | 郭欢. 新型压缩空气储能系统性能研究[D]. 北京: 中国科学院大学, 2013. |
GUO Huan. Study on performance of new compressed air energy storage system[D]. Beijing: University of Chinese Academy of Sciences, 2013. | |
[26] | 易争明, 李正科, 吴志民. 化工过程模拟Aspen Plus教程[M]. 北京: 化学工业出版社, 2023. |
[27] | 陈力, 廖传华, 王常青. 液-液二氧化碳储能系统的性能分析[J]. 化工机械, 2024, 51(1): 151-159, 164. |
CHEN Li, LIAO Chuanhua, WANG Changqing. Performance analysis of liquid-liquid carbon dioxide energy storage system[J]. Chemical Engineering & Machinery, 2024, 51(1): 151-159, 164. |
[1] | WANG Xiaoyan, WU Shuquan. Research on capacity allocation for source-grid-load-storage systems based on improved PSO [J]. Integrated Intelligent Energy, 2024, 46(9): 28-36. |
[2] | FAN Yanbo, XIONG Yaxuan, LI Xiang, TIAN Xi, YANG Yang. Advancement in multi-objective optimization for building energy use based on genetic algorithms [J]. Integrated Intelligent Energy, 2024, 46(9): 69-85. |
[3] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[4] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[5] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[6] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[7] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[8] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[9] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[10] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[11] | YIN Linfei, ZHAO Yiran. Stability control of multiband power system stabilizer based on Transformer-embedded deep deterministic policy gradient method [J]. Integrated Intelligent Energy, 2024, 46(12): 1-9. |
[12] | LI Bo, CAO Yue, XU Jingyi, SI Fengqi. Energy dispatch of wind-photovoltaic-thermal-storage considering the coupling characteristics of thermal power and molten salt heat storage [J]. Integrated Intelligent Energy, 2024, 46(12): 55-63. |
[13] | SHI Shengyao, JIANG Minglei, ZHANG Heyi, MA Kerui, WANG Ziqiang, MA Zhiqiang. Reactive power coordination control strategy for sending-end hybrid cascaded HVDC transmission system with high proportion of wind power integration [J]. Integrated Intelligent Energy, 2024, 46(11): 83-91. |
[14] | BAI Zhang, HAO Wenjie, LI Qi, HAO hongliang, WEN Caifeng, GUO Su, HUANG Xiankun. Capacity configuration optimization of wind‒solar hydrogen production based on life cycle assessment [J]. Integrated Intelligent Energy, 2024, 46(10): 1-11. |
[15] | LI Mingyang, DONG Zhe. Pricing mechanism and optimal scheduling of virtual power plants containing distributed renewable energy and demand response loads [J]. Integrated Intelligent Energy, 2024, 46(10): 12-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||